State Key Laboratory of Advanced Electromagnetic Engineering and Technology
Huazhong University of Science and Technology
China
HomepageSchool of Electrical and Electronic Engineering
Huazhong University of Science and Technology
China
HomepageSchool of Electrical and Electronic Engineering
Huazhong University of Science and Technology
China
HomepageSchool of Information Science and Engineering
Wuhan University of Science and Technology
China
HomepageCollege of Electrical and Electronic Engineering
Huazhong University of Science and Technology
China
Homepage1. Anderson, L. I., "Nikola Tesla on his work with alternating currents and their application to wireless telegraphy, telephony and transmission of power," Telephony and Transmission of Power Twenty First Century Books, 88-147, 2002. Google Scholar
2. Garnica, J., R. A. Chinga, and J. Lin, "Wireless power transmission: From far field to near field," Proc. IEEE, Vol. 101, No. 6, 1321-1331, 2013.
doi:10.1109/JPROC.2013.2251411 Google Scholar
3. McSpadden, J. O. and J. C. Mankins, "Space solar power programs and microwave wireless power transmission technology," IEEE Micro. Mag., Vol. 3, No. 4, 46-57, 2002.
doi:10.1109/MMW.2002.1145675 Google Scholar
4. Kurs, A, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, 2007.
doi:10.1126/science.1143254 Google Scholar
5. Sample, A. P., D. A. Meyer, and J. R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Trans. Ind. Electron., Vol. 58, No. 2, 544-554, 2011.
doi:10.1109/TIE.2010.2046002 Google Scholar
6. Chen, L., S. Liu, Y. C. Zhou, and T. J. Cui, "An optimizable circuit structure for high-efficiency wireless power transfer," IEEE Trans. Ind. Electron., Vol. 60, No. 1, 339-349, 2013.
doi:10.1109/TIE.2011.2179275 Google Scholar
7. Lee, C. K., W. Zhong, and S. Hui, "Effects of magnetic coupling of nonadjacent resonators on wireless power domino-resonator systems," IEEE Trans. Power Electron., Vol. 27, No. 4, 1905-1916, 2012.
doi:10.1109/TPEL.2011.2169460 Google Scholar
8. Ahn, D. and S. Hong, "A study on magnetic field repeater in wireless power transfer," IEEE Trans. Ind. Electron., Vol. 60, No. 1, 360-371, 2013.
doi:10.1109/TIE.2012.2188254 Google Scholar
9. Che, B. J., G. H. Yang, F. Y. Meng, K. Zhang, J. H. Fu, Q. Wu, and L. Sun, "Omnidirectional non-radiative wireless power transfer with rotating magnetic field and efficiency improvement by metamaterial," Appl. Phys. A --- Mater. Sci. & Processing, Vol. 116, No. 4, 1579-1586, 2014.
doi:10.1007/s00339-014-8409-0 Google Scholar
10. Rodriguez, E. S. G., A. K. RamRakhyani, D. Schurig, and G. Lazzi, "Compact low-frequency metamaterial design for wireless power transfer efficiency enhancement," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 5, 1644-1654, 2016.
doi:10.1109/TMTT.2016.2549526 Google Scholar
11. Pham, T. S., A. K. Ranaweera, V. D. Lam, and J. W. Lee, "Experiments on localized wireless power transmission using a magneto-inductive wave two-dimensional metamaterial cavity," Appl. Phys. Exp., Vol. 9, 044101, 2016.
doi:10.7567/APEX.9.044101 Google Scholar
12. Zhang, Y. Y., C. Yao, H. J. Tang, and Y. C. Li, "Spatially mapped metamaterials make a new magnetic concentrator for the two-coil system," Progress In Electromagnetics Research, Vol. 150, 49-57, 2015.
doi:10.2528/PIER14110104 Google Scholar
13. Cho, Y., J. J. Kim, D. H. Kim, S. Lee, H. Kim, C. Song, S. Kong, H. Kim, C. Seo, S. Ahn, and J. Kim, "Thin PCB-type metamaterials for improved efficiency and reduced EMF leakage in wireless power transfer systems," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 2, 353-364, 2016. Google Scholar
14. Chen, J. F., Z. Y. Hu, S. M. Wang, M. H. Liu, Y. Z. Cheng, Z. X. Ding, B. Wei, and S. C. Wang, "Application of ultra-thin assembled planar metamaterial for wireless power transfer system," Progress In Electromagnetics Research C, Vol. 65, 153-162, 2016.
doi:10.2528/PIERC16033002 Google Scholar
15. Chabalko, M. J., J. Besnoff, and D. S. Ricketts, "Magnetic field enhancement in wireless power with metamaterials and magnetic resonant couplers," IEEE Antenna Wireless Propag. Lett., Vol. 15, 452-455, 2016.
doi:10.1109/LAWP.2015.2452216 Google Scholar
16. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
17. Urzhumov, Y. and D. R. Smith, "Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer," Phys. Rev. B, Vol. 83, No. 20, 205114, 2011.
doi:10.1103/PhysRevB.83.205114 Google Scholar
18. Choi, J. and C. H. Seo, "High-efficiency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress In Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609 Google Scholar
19. Huang, D., Y. Urzhumov, D. R. Smith, K. H. Teo, and J. Zhang, "Magnetic superlens-enhanced inductive coupling for wireless power transfer," J. Appl. Phys., Vol. 111, No. 6, 064902, 2012.
doi:10.1063/1.3692757 Google Scholar
20. Wang, B., K. H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, and J. Zhang, "Experiments on wireless power transfer with metamaterials," Appl. Phys. Lett., Vol. 98, No. 25, 254101, 2011.
doi:10.1063/1.3601927 Google Scholar
21. Wang, B., W. Yerazunis, and K. H. Teo, "Wireless power transfer: Metamaterials and array of coupled resonators," Proc. IEEE, Vol. 101, No. 6, 1359-1368, 2013.
doi:10.1109/JPROC.2013.2245611 Google Scholar
22. Lipworth, G., J. Ensworth, K. Seetharam, D. Huang, J. S. Lee, P. Schmalenberg, T. Nomura, M. S. Reynolds, D. R. Smith, and Y. Urzhumov, "Magnetic metamaterial superlens for increased range wireless power transfer," Sci. Rep., Vol. 4, 3642, 2014. Google Scholar
23. Ranaweera, A. L. A. K., T. P. Doung, and J. W. Lee, "Experimental investigation of compact metamaterial for high efficiency midrange wireless power transfer applications," J. Appl. Phys., Vol. 116, No. 4, 043914, 2014.
doi:10.1063/1.4891715 Google Scholar
24. Ranaweera, A. L. A. K., C. A. Moscoso, and J. W. Lee, "Anisotropic metamaterial for efficiency enhancement of mid-range wireless power transfer under coil misalignment," J. Phys. D: Appl. Phys., Vol. 48, No. 45, 455104, 2015.
doi:10.1088/0022-3727/48/45/455104 Google Scholar
25. Chen, W. C., C. M. Bingham, K. M. Mak, N. W. Caira, and W. J. Padilla, "Extremely subwavelength planar magnetic metamaterials," Phys. Rev. B, Vol. 85, No. 20, 201104, 2012.
doi:10.1103/PhysRevB.85.201104 Google Scholar
26. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2258-2267, 2007.
doi:10.1109/TAP.2007.901950 Google Scholar
27. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B, Vol. 69, No. 1, 014402, 2004.
doi:10.1103/PhysRevB.69.014402 Google Scholar
28. Huang, Y., H. J. Tang, E. C. Chen, and C. Yao, "Effect on wireless power transmission with different layout of left-handed materials," AIP Adv., Vol. 3, No. 7, 072134, 2013.
doi:10.1063/1.4817579 Google Scholar
29. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617 Google Scholar
30. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, No. 19, 195104, 2002.
doi:10.1103/PhysRevB.65.195104 Google Scholar
31. Wu, Q., Y. H. Li, N. Gao, F. Yang, Y. Q. Chen, K. Fang, Y. W. Zhang, and H. Chen, "Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms," EPL-Europhys. Lett., Vol. 109, No. 6, 68005, 2015.
doi:10.1209/0295-5075/109/68005 Google Scholar
32. Cheng, Y. Z., J. Jin, W. L. Li, J. F. Chen, B. Wang, and R. Z. Gong, "Indefinite-permeability metamaterial lens with finite size for miniaturized wireless power transfer system," Int. J. Electron. Commun. (AEU), Vol. 70, No. 9, 1282-1287, 2016.
doi:10.1016/j.aeue.2016.06.011 Google Scholar
33. Fan, Y., L. Li, S. Yu, C. Zhu, and C. H. Liang, "Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials," Progress In Electromagnetics Research, Vol. 141, 769-784, 2013.
doi:10.2528/PIER13061711 Google Scholar
34. Son, H. C., J. W. Kim, D. H. Kim, K. H. Kim, and Y. J. Park, "Self-resonant coil with coaxial-like capacitor for wireless power transfer," IEEE Microw. Conf. Proc. (APMC), 90-93, Asia-Pacific, 2011. Google Scholar
35. Kalantarov, P. L. and L. A. Zeitlin, Inductances Calculation Handbook, 1986, translated by T. Chen, et al., China Machine Press, 1992 (in Chinese).
36. Lyu, Y. L., F. Y. Meng, G. H. Yang, B. J. Che, Q. Wu, L. Sun, D. Erni, and J. L. W. Li, "A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer," IEEE Trans. Power Electron., Vol. 30, No. 11, 6097-6107, 2015.
doi:10.1109/TPEL.2014.2387835 Google Scholar
37. Mongia, R., RF and Microwave Coupled-Line Circuits, Artech House, 2007.
38. Chen, J., Feedback Networks: Theory and Circuit Application, World Scientific, 2007.
doi:10.1142/3200
39. Freire, M. J. and R. Marques, "Planar magnetoinductive lens for three-dimensional subwavelength imaging," Appl. Phys. Lett., Vol. 86, 182505, 2005.
doi:10.1063/1.1922074 Google Scholar
40. Duong, T. P. and J. W. Lee, "Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 8, 442-444, 2011.
doi:10.1109/LMWC.2011.2160163 Google Scholar
41. Niu, W. Q., W. Gu, J. X. Chu, and A. D. Shen, "Coupled-mode analysis of frequency splitting phenomena in CPT systems," Electron. Lett., Vol. 48, No. 12, 723-724, 2012.
doi:10.1049/el.2012.0953 Google Scholar