1. Xu, F., et al., "Cylindrical conformal single-patch microstrip antennas based on three dimensional woven glass fiber/epoxy resin composites," Composites Part B, Vol. 78, 331-337, Sep. 2015.
doi:10.1016/j.compositesb.2015.03.091 Google Scholar
2. Haghzadeh, M., H. M. Jaradat, C. Armiento, and A. Akyurtlu, "Design and simulation of fully printable conformal antennas with BST/polymer composite based phase shifters," Progress In Electromagnetics Research C, Vol. 62, 167-178, 2016.
doi:10.2528/PIERC15091504 Google Scholar
3. Elias, N. A., et al., "Bending and crumpling deformation study of the resonant characteristic and SAR for a 2.4 GHz textile antenna," Jurnal Teknologi, Vol. 77, No. 10, 17-23, 2015. Google Scholar
4. Tang, M.-C., T. Shi, and R. W. Ziolkowski, "Flexible efficient quasi-Yagi printed uniplanar antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5343-5350, Dec. 2015.
doi:10.1109/TAP.2015.2486807 Google Scholar
5. Fan, K. K. and Z.-C. Hao, "Cylindrical conformal array antenna with tilted H-plane Fan-shaped beam for millimeter-wave application," Microwave and Optical Technology Letters, Vol. 58, No. 7, 1666-1671, Jul. 2016.
doi:10.1002/mop.29879 Google Scholar
6. Semkin, V., et al., "Beam switching conformal antenna array for mm-wave communications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 28-31, Feb. 2016. Google Scholar
7. Saeed, S. M., C. A. Balanis, and C. R. Birtcher, "Inkjet-printed flexible reconfigurable antenna for conformal WLAN/WiMAX wireless devices," IEEE Antennas and Wireless Propagation Letters, 2016. Google Scholar
8. Hur, S., et al., "Millimeter wave beamforming for wireless backhaul and access in small cell networks," IEEE Transactions on Communications, Vol. 61, No. 10, 4391-4403, Oct. 2013.
doi:10.1109/TCOMM.2013.090513.120848 Google Scholar
9. Rappaport, T. S., et al., "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, May 2013.
doi:10.1109/ACCESS.2013.2260813 Google Scholar
10. Niu, Y., et al., "A survey of millimeter wave communications (mm Wave) for 5G: Opportunities and challenges," Wireless Networks, Vol. 21, No. 8, 2657-2676, Nov. 2015.
doi:10.1007/s11276-015-0942-z Google Scholar
11. Zhu, Y., et al., "Demystifying 60 GHz outdoor picocells," 20th Annual International Conference on Mobile Computing and Networking (MobiCom), 5-16, Sep. 2014. Google Scholar
12. Verma, L., M. Fakharzadeh, and S. Choi, "Backhaul need for speed: 60 GHz is the solution," IEEE Wireless Communications, Vol. 22, No. 6, 114-121, Dec. 2015.
doi:10.1109/MWC.2015.7368832 Google Scholar
13. Rahimian, A. and F. Mehran, "RF link budget analysis in urban propagation microcell environment for mobile radio communication systems link planning," International Conference on Wireless Communications and Signal Processing (WCSP), 1-5, Nov. 2011. Google Scholar
14. Agiwal, M., A. Roy, and N. Saxena, "Next generation 5G wireless networks: A comprehensive survey," IEEE Communications Surveys & Tutorials, Vol. 18, No. 3, 1617-1655, Third Quarter, 2016.
doi:10.1109/COMST.2016.2532458 Google Scholar
15. Hall, P. S. and S. J. Vetterlein, "Review of radio frequency beamforming techniques for scanned and multiple beam antennas," IEE Microwaves, Antennas and Propagation, Vol. 137, No. 5, 293-303, Oct. 1990.
doi:10.1049/ip-h-2.1990.0055 Google Scholar
16. Rotman, W. and R. F. Turner, "Wide-angle microwave lens for line source applications," IEEE Transactions on Antennas and Propagation, Vol. 11, No. 6, 623-632, Nov. 1963.
doi:10.1109/TAP.1963.1138114 Google Scholar
17. Singhal, P. K, R. D. Gupta, and P. C. Sharma, "Recent trends in design and analysis of Rotman-type lens for multiple beamforming," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 8, No. 3, 321-338, Feb. 1998.
doi:10.1002/(SICI)1099-047X(199807)8:4<321::AID-MMCE6>3.0.CO;2-I Google Scholar
18. Simon, P. S., "Analysis and synthesis of Rotman lenses," 22nd AIAA International Communications Satellite Systems Conference & Exhibit, 1-11, May 2004. Google Scholar
19. Vashist, S., M. K. Soni, and P. K. Singhal, "A review on the development of Rotman lens antenna," Chinese Journal of Engineering, Vol. 2014, article ID 385385, 1-9, Jul. 2014. Google Scholar
20. Rahim, S. K. A. and P. Gardner, "A novel active antenna beamforming networks using Butler matrices," Progress In Electromagnetics Research C, Vol. 11, 183-198, 2009.
doi:10.2528/PIERC09110106 Google Scholar
21. Song, I. S., et al., "60 GHz Rotman lens and new compact low loss delay line using LTCC technology," IEEE Radio and Wireless Symposium (RWS), 663-666, Jan. 2009. Google Scholar
22. Lee, W., et al., "Compact two-layer Rotman lens-fed microstrip antenna array at 24 GHz," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 2, 460-466, Feb. 2011.
doi:10.1109/TAP.2010.2096380 Google Scholar
23. Kushwah, R. P. S., P. K. Singhal, and P. C. Sharma, "Design of symmetric bootlace lens with gain analysis at UHF band," Progress In Electromagnetics Research Letters, Vol. 6, 83-89, 2009.
doi:10.2528/PIERL08122905 Google Scholar
24. Lee, W., et al., "Beamforming lens antenna on a high resistivity silicon wafer for 60 GHz WPAN," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 706-713, Mar. 2010.
doi:10.1109/TAP.2009.2039331 Google Scholar
25. Rahimian, A., "Design and performance of a Ku-band Rotman lens beamforming network for satellite systems," Progress In Electromagnetics Research M, Vol. 28, 41-55, 2013.
doi:10.2528/PIERM12111511 Google Scholar
26. Rajabalian, M. and B. Zakeri, "Optimisation and implementation for a non-focal Rotman lens design," IET Microwaves, Antennas & Propagation, Vol. 9, No. 9, 982-987, Jun. 2015.
doi:10.1049/iet-map.2014.0797 Google Scholar
27. Bhattacharyya, A. K., Phased Array Antennas: Floquet Analysis, Synthesis, BFNs and Active Array Systems, John Wiley & Sons, 2006.
28. Cho, C.-L., et al., "Inkjet-printed multilayer bandpass filter using liquid crystal polymer system-on-package technology," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, No. 4, 622-629, Apr. 2016.
doi:10.1109/TCPMT.2016.2530813 Google Scholar
29. Cabrol, P. and P. Pietraski, "60 GHz patch antenna array on low cost liquid-crystal polymer (LCP) substrate," IEEE Long Island Systems, Applications and Technology Conference (LISAT), 1-6, May 2014. Google Scholar
30. Liu, D. and Y. P. Zhang, "Integration of array antennas in chip package for 60-GHz radios," Proceedings of the IEEE, Vol. 100, No. 7, 2364-2371, Jul. 2012. Google Scholar
31. Saily, J., et al., "Millimetre-wave beam-switching Rotman lens antenna designs on multi-layered LCP substrates," 10th European Conference on Antennas and Propagation (EuCAP), 1-5, Apr. 2016. Google Scholar
32. Kingsley, N., G. E. Ponchak, and J. Papapolymerou, "Reconfigurable RF MEMS phased array antenna integrated within a liquid crystal polymer (LCP) system-on-package," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 108-118, Jan. 2008.
doi:10.1109/TAP.2007.913151 Google Scholar
33. Lamminen, A., et al., "Dual-circular polarised patch antenna array on LCP for 60 GHz millimetre-wave identification," 8th European Conference on Antennas and Propagation (EuCAP), 537-541, Apr. 2014.
doi:10.1109/EuCAP.2014.6901813 Google Scholar
34. Thompson, D. C., et al., "Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 4, 1343-1352, Apr. 2004.
doi:10.1109/TMTT.2004.825738 Google Scholar
35. Christie, S., et al., "Rotman lens-based retrodirective array," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1343-1351, Mar. 2012.
doi:10.1109/TAP.2011.2180347 Google Scholar
36. Rotman, R., M. Tur, and L. Yaron, "True time delay in phased arrays," Proceedings of the IEEE, Vol. 104, No. 3, 504-518, Mar. 2016.
doi:10.1109/JPROC.2016.2515122 Google Scholar
37. Kutty, S. and D. Sen, "Beamforming for millimeter wave communications: An inclusive survey," IEEE Communications Surveys & Tutorials, Vol. 18, No. 2, 949-973, Second Quarter, 2016.
doi:10.1109/COMST.2015.2504600 Google Scholar
38. Soh, P. J. and G. A. E. Vandenbosch, "Textile antennas for body area networks: design strategies and evaluation methods," Electromagnetics of Body Area Networks: Antennas, Propagation, and RF Systems, D. H. Werner and Z. H. Jiang, Eds., 1-25, John Wiley & Sons, Inc., 2016. Google Scholar