Vol. 71
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-11-23
Compact Rotman Lens Structure Configurations to Support Millimeter Wave Devices
By
Progress In Electromagnetics Research B, Vol. 71, 91-106, 2016
Abstract
The development of modern communication devices for the latest technologies such as 5G has brought the millimeter wave technology into the spotlight because it offers higher data rates and bandwidth. Since highly directional transmissions are necessary for communication in these frequencies due to high path loss and atmospheric absorption, the use of adaptive antennas is inevitable. Rotman lenses have long been used as analog beam forming networks to support linear array antennas for electronic scanning. Their broad bandwidth and planar structure make them ideal for a variety of applications. However, their overall dimensions can be prohibitive especially for large scan angles. In this paper, we propose a few compact configurations that reduce the overall dimensions of Rotman lens as much as 50% without degrading its performance.
Citation
Toan Khanh Vo Dai, and Ozlem Kilic, "Compact Rotman Lens Structure Configurations to Support Millimeter Wave Devices," Progress In Electromagnetics Research B, Vol. 71, 91-106, 2016.
doi:10.2528/PIERB16082704
References

1. Rotman, W. and R. Turner, "Wide-angle microwave lens for line source applications," IEEE Transactions on Antennas and Propagation, Vol. 11, 623-632, 1963.
doi:10.1109/TAP.1963.1138114        Google Scholar

2. Smith, M. S., "Design considerations for Ruze and Rotman lenses," Radio and Electronic Engineer, Vol. 52, No. 4, 181-187, 1982.
doi:10.1049/ree.1982.0027        Google Scholar

3. Smith, M. S. and A. K. S. Fong, "Amplitude performance of Ruze and Rotman lenses," Radio and Electronic Engineer, Vol. 53, No. 9, 329-336, 1983.
doi:10.1049/ree.1983.0061        Google Scholar

4. Hansen, R. C., "Design trades for Rotman lenses," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 4, 464-472, 1991.
doi:10.1109/8.81458        Google Scholar

5. Katagi, T., S. Mano, S. Sato, S. Tahara, and E. Tomimatsu, "An improved design method of Rotman lens antennas," IEEE Antennas and Propagation Society International Symposium, Vol. 20, 136-139, 1982.        Google Scholar

6. Weiss, S. and O. Kilic, "Rotman lens design for aperiodic arrays," Pro. IEEE AP-S/URSI Intl. Conference, Toronto, Canada, July 2010.        Google Scholar

7. Weiss, S., A. Zaghloul, and O. Kilic, "Measurement and simulation of Rotman lens designs that mitigate internal diffraction effects," Proc. IEEE AP-S/URSI Intl Conference, Toronto, Canada, July 2010.        Google Scholar

8. Nguyen, T., T. K. Vo Dai, and O. Kilic, "Rotman lens-fed aperture coupled array antenna at millimeter wave," IEEE APS/URSI 2016, Fajardo, Puerto Rico, USA, July 2016.        Google Scholar

9. Rappaport, C. and A. Zaghloul, "Optimized three-dimensional lenses for wide-angle scanning," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 11, 1227-1236, 1985.
doi:10.1109/TAP.1985.1143519        Google Scholar

10. Dong, J., A. I. Zaghloul, and R. Rotman, "Phase-error performance of multi-focal and non-focal two-dimensional Rotman lens designs," IET Microwaves, Antennas & Propagation, Vol. 4, No. 12, 2097-2103, 2010.
doi:10.1049/iet-map.2009.0565        Google Scholar

11. Vo Dai, T. K. and O. Kilic, "A non-focal rotman lens design to support cylindrically conformal array antenna," The Applied Computational Electromagnetics Society Express Journal, Vol. 7, July 2016.        Google Scholar

12. Kilic, O. and R. Dahlstrom, "Rotman lens beam formers for Army multifunction RF antenna applications," 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 2, 2005.        Google Scholar

13. Kilic, O. and S. Weiss, "Rotman lens designs for military applications," Radio Science Bulletin, No. 333, 10-24, 2010.        Google Scholar

14. Zaghloul, A., O. Kilic, S. Weiss, and E. Adler, "Realization of Rotman’s concepts of beamformer lenses and artificial dielectric materials," IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, COMCAS 2009, 2009.        Google Scholar

15. Weiss, S., S. Keller, and C. Ly, "Development of simple affordable beamformers for army platforms," Proceedings of GOMACTech --- 07 Conference, Lake Buena Vista, FL, 2006.        Google Scholar

16. Schulwitz, L. and A. Mortazawi, "A new low loss Rotman lens design using a graded dielectric substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 12, 2734-2741, 2008.
doi:10.1109/TMTT.2008.2006802        Google Scholar

17. Hirokawa, J. and M. Ando, "Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 5, 625-630, 1998.
doi:10.1109/8.668903        Google Scholar

18. Cheng, Y. J., W. Hong, K. Wu, Z. Q. Kuai, C. Yu, J. X. Chen, J. Y. Zhou, and H. J. Tang, "Substrate integrated waveguide (SIW) Rotman lens and its Ka-band multibeam array antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2504-2513, 2008.
doi:10.1109/TAP.2008.927567        Google Scholar

19. Peterson, A. F. and E. O. Rausch, "Scattering matrix integral equation analysis for the design of a waveguide Rotman lens," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 5, 870-878, 1999.
doi:10.1109/8.774150        Google Scholar

20. Gandini, E., M. Ettorre, M. Casaletti, K. Tekkouk, L. Le Coq, and R. Sauleau, "SIW slotted waveguide array with pillbox transition for mechanical beam scanning," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1572-1575, 2012.
doi:10.1109/LAWP.2012.2235057        Google Scholar

21. Casaletti, M., R. Sauleau, M. Ettorre, and S. Maci, "Efficient analysis of metallic and dielectric posts in parallel-plate waveguide structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 10, 2979-2989, 2012.
doi:10.1109/TMTT.2012.2209449        Google Scholar

22. Casaletti, M., G. Valerio, J. Seljan, M. Ettorre, and R. Sauleau, "A full-wave hybrid method for the analysis of multilayered SIW-based antennas," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 11, 5575-5588, 2013.
doi:10.1109/TAP.2013.2279795        Google Scholar

23. Ettorre, M., R. Sauleau, and L. Le Coq, "Multi-Beam multi-layer leaky-wave SIW pillbox antenna for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 4, 1093-1100, 2011.
doi:10.1109/TAP.2011.2109695        Google Scholar

24. Tekkouk, K., et al., "Multibeam SIW slotted waveguide antenna system fed by a compact dual-layer rotman lens," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 504-514, 2016.
doi:10.1109/TAP.2015.2499752        Google Scholar

25. Tudosie, G. and R. Vahldieck, "An LTCC-based folded Rotman lens for phased array applications," 2006 Asia-Paci c Microwave Conference, 2006.        Google Scholar

26. Vo Dai, T. K. and O. Kilic, "Designing folded rotman lens," IEEE Internaltional Symposium on Antennas and Propagation/USNC-URSI National Radio Science Meeting, 2016.        Google Scholar

27. Josefsson, L. and P. Persson, Conformal Array Antenna Theory and Design, Vol. 29, John Wiley & Sons, 2006.
doi:10.1002/047178012X

28. Jha, R. M., S. A. Bokhari, V. Sudhakar, and P. R. Mahapatra, "Closed form expressions for integral ray geometric parameters for wave propagation on general quadric cylinders," Antennas and Propagation Society International Symposium, 1989, AP-S. Digest, 203-206, 1989.
doi:10.1109/APS.1989.134650        Google Scholar

29. Rice, S. O., "Reflections from circular bends in rectangular wave guides — Matrix theory," Bell System Technical Journal, Vol. 27, No. 2, 305-349, 1948.
doi:10.1002/j.1538-7305.1948.tb00911.x        Google Scholar

30. Barlow, H. E. M., "Propagation around bends in waveguides," Proceedings of the IEE-Part C: Monographs, Vol. 106, No. 9, 11-15, 1959.
doi:10.1049/pi-c.1959.0004        Google Scholar

31. nScrypt, Inc., , http://nscrypt.com/, October 2016.