Vol. 71
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-11-29
Single Layered Wide Bandwidth Nanosized Strontium Hexa-Ferrite Filled LLDPE Absorber in X-Band
By
Progress In Electromagnetics Research B, Vol. 71, 137-152, 2016
Abstract
A wide-band single-layer EMI shielding material for X-band is developed using an M-type strontium hexa-ferrite nanoparticle filler in LLDPE matrix. Strontium hexa-ferrite nanoparticles with crystalline size of 25.8 nm are obtained by annealing at 850˚C. LLDPE allows a higher wt. % of ferrite inclusions enabling enhanced dielectric and magnetic losses. A peak absorption of 99.39% is achieved at 10.21 GHz when the filler weight in a 3 mm thick sample is adjusted to 60 wt.% while a wide -10 dB absorption bandwidth of 3.36 GHz centered around the same frequency is obtained. The density of the composite is 1.36 g/cm3 and shows negligible water absorption.
Citation
Soma Chakraborty, Nidhi Saxena Bhattacharyya, and Satyajib Bhattacharyya, "Single Layered Wide Bandwidth Nanosized Strontium Hexa-Ferrite Filled LLDPE Absorber in X-Band," Progress In Electromagnetics Research B, Vol. 71, 137-152, 2016.
doi:10.2528/PIERB16091903
References

1. Kim, S.-S., S.-T. Kim, Y. Yoon, and K. Lee, "Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies," Applied Physics Letters, Vol. 97, 10F905, 2005.

2. Annadurai, P., A. K. Mallick, and D. K. Tripathy, "Studies on microwave shielding materials based on ferrite and carbon black-filled EPDM rubber in the X-band frequency," Journal of Applied Polymer Science, Vol. 83, 145-150, 2002.
doi:10.1002/app.2237

3. Verma, A., R. G. Mendiratta, T. C. Goel, and D. C. Dube, "Microwave studies on strontium ferrite based absorbers," Journal of Electroceramics, Vol. 8, 203-208, 2002.
doi:10.1023/A:1020841915616

4. Jalalia, M., S. Dauterstedt, A. Michaud, and R. Wuthrich, "Electromagnetic shielding of polymer-matrix composites with metallic nanoparticles," Composites Part B Engineering, Vol. 42, 1420-1426, 2011.
doi:10.1016/j.compositesb.2011.05.018

5. Vinayasree, S., M. A. Soloman, V. Sunny, P. Mohanan, P. Kurian, and M. R. Anantharaman, "A microwave absorber based on strontium ferrite–carbon black-nitrile rubber for S and X-band applications," Composites Science Technology, Vol. 82, 69-75, 2013.
doi:10.1016/j.compscitech.2013.04.010

6. Chen, N., G. Mu, X. Pan, K. Gan, and M. Gu, "Microwave absorption properties of SrFe12O19/ZnFe2O4 composite powders," Material Science Engineering B, Vol. 139, 256-60, 2007.
doi:10.1016/j.mseb.2007.02.002

7. Koledintseva, M. Y., A. G. Razmadze, A. Y. Gafarov, V. V. Khilkevich, J. L. Drewniak, and T. Tsutaoka, "Attenuation in extended structures coated with thin magneto-dielectric absorber layer," Progress In Electromagnetic Research, Vol. 118, 441-459, 2011.
doi:10.2528/PIER11053012

8. Ghasemi, A., V. Sepel´ak, X. Liu, and A. Morisako, "Microwave absorption properties of Mn-Co-Sn doped barium ferrite nanoparticles," IEEE Trans. on Magnetics, Vol. 45, 2456-2459, 2009.
doi:10.1109/TMAG.2009.2018611

9. Kim, K. Y., W. S. Kim, and S. Y. Hong, "A study on the behavior of laminated electromagnetic wave absorber," IEEE Trans. on Magnetics, Vol. 29, 2134-2138, 1993.
doi:10.1109/20.221035

10. Komori, H. and Y. Konishi, "Wide band electromagnetic wave absorber with thin magnetic layers," IEEE Trans. on Broadcasting, Vol. 40, 219-222, 1994.
doi:10.1109/11.362937

11. Motojima, S., Y. Noda, S. Hoshiya, and Y. Hishikawa, "Electromagnetic wave absorption property of carbon microcoils in 12–110 GHz region," Journal of Applied Physics, Vol. 94, 2325-2330, 2003.
doi:10.1063/1.1589603

12. Bregar, V. B., "Advantages of ferromagnetic nanoparticle composites in microwave absorbers," IEEE Trans. on Magnetics, Vol. 40, 1679-1684, 2004.
doi:10.1109/TMAG.2004.826622

13. He, F., S. Lau, H. L. Chan, and J. Fan, "High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates," Advanced Materials, Vol. 21, 710-715, 2009.
doi:10.1002/adma.200801758

14. Kakati, B. K. and D. Deka, "Differences in physico-mechanical behaviors of resol(e) and novolac type phenolic resin based composite bipolar plate for proton exchange membrane (PEM) fuel cell," Electrochimica Acta, Vol. 52, 7330-7336, 2007.
doi:10.1016/j.electacta.2007.06.021

15. Saunders, K. J., Organic Polymer Chemistry, Chapman and Hall, 1973.
doi:10.1007/978-94-017-2504-0

16. Domininghaus, H., Plastic for Engineering, Hanser Publishers, 1988.

17. Harper, C. A., Handbook of Plastics Technologies, McGraw Hill Professional, 2010.

18. Huang, X., F. Liu, and P. Jiang, "Effect of nanoparticle surface treatment on morphology, electrical and water treeing behavior of LLDPE composites," IEEE Trans. on Dielectrics and Electrical Insulation, Vol. 17, 1697-1704, 2010.
doi:10.1109/TDEI.2010.5658219

19. Cochardt, A., "Modified strontium ferrite, a new permanent magnet material," Journal of Applied Physics, Vol. 34, 1273-1274, 1963.
doi:10.1063/1.1729468

20. Guohong, M., N. Chen, X. Pan, H. Shen, and G. Mingyuan, "Preparation and microwave absorption properties of barium ferrite nanorods," Material Letters, Vol. 62, 840-842, 2008.
doi:10.1016/j.matlet.2007.06.074

21. Ghasemi, A., A. Hossienpour, A. Morisako, A. Saatchi, and M. Salehi, "Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite," Journal of Magnetism and Magnetic Materials, Vol. 302, 429-435, 2006.
doi:10.1016/j.jmmm.2005.10.006

22. Li, B. W., Y. Shen, Z. X. Yue, and C. W. Nan, "Influence of particle size on electromagnetic behavior and microwave absorption properties of Z-type Ba-ferrite/polymer composites," Journal of Magnetism and Magnetic Materials, Vol. 313, 322-328, 2007.
doi:10.1016/j.jmmm.2007.01.017

23. Ghasemi, A., X. Liu, and A. Morisako, "Effect of additional elements on the structural properties, magnetic characteristics and natural resonance frequency of strontium ferrite nanoparticles/polymer composite," IEEE Trans. on Magnetics, Vol. 45, 4420-4423, 2009.
doi:10.1109/TMAG.2009.2022183

24. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by timedomain techniques," IEEE Trans. on Instrumentation Measurement, Vol. 19, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

25. Engen, G. F. and C. A. Hoer, "Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Trans on Microwave Theory and Techniques, Vol. 27, 987-993, 1979.
doi:10.1109/TMTT.1979.1129778

26. Ozah, S. and N. S. Bhattacharyya, "Nanosized barium hexaferrite in novolac phenolic resin as microwave absorber for X-band application," Journal of Magnetism and Magnetic Materials, Vol. 342, 92-99, 2013.
doi:10.1016/j.jmmm.2013.04.050

27. Gupta, N., M. C. Dimri, S. C. Kashyap, and D. C. Dube, "Processing and properties of cobaltsubstituted lithium ferrite in the GHz frequency range," Ceramic International, Vol. 31, 171-176, 2005.
doi:10.1016/j.ceramint.2004.04.004

28. Berkowitz, A. E., W. J. Shuele, and P. J. Flanders, "Influence of crystallite size on the magnetic properties of acicular ϒ-Fe2O3 particles," Journal of Applied Physics, Vol. 39, 1261-1263, 1968.
doi:10.1063/1.1656256

29. Verwey, E. J. W., "Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures," Nature, Vol. 144, 327-328, 1939.
doi:10.1038/144327b0

30. Shin, J. Y. and J. H. Oh, "The microwave absorbing phenomena of ferrite microwave absorbers," IEEE Trans. on Magnetics, Vol. 29, 3437-3439, 1993.
doi:10.1109/20.281188

31. Pullar, R. C., "Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics," Progress in Material Science, Vol. 57, 1191-1334, 2012.
doi:10.1016/j.pmatsci.2012.04.001

32. Feng, Y. B., T. Qiu, and C. Y. Shen, "Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite," Journal of Magnetism and Magnetic Materials, Vol. 318, 8-13, 2007.
doi:10.1016/j.jmmm.2007.04.012