1. Sulaiman, E., T. Kosaka, and N. Matsui, "Design and performance of 6-slot 5-pole PMFSM with hybrid excitation for hybrid electric vehicle applications," International Power Electronics Conference (IPEC), 1962-1968, 2010. Google Scholar
2. Mahmoudi, A., N. A. Rahim, and H. W. Ping, "Axial-flux permanent-magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis," Progress In Electromagnetics Research, Vol. 122, 467-496, 2012.
doi:10.2528/PIER11090402 Google Scholar
3. Chan, C. C., "The state of the art of electric, hybrid, and fuel cell vehicles," Proc. IEEE, Vol. 95, No. 4, 704-718, Apr. 2007.
doi:10.1109/JPROC.2007.892489 Google Scholar
4. Zhao, W., M. Cheng, J. Ji, and R. Cao, "Electromagnetic analysis of a modular flux-switching permanent-magnet motor using finite-element method," Progress In Electromagnetics Research B, Vol. 43, 239-253, 2012.
doi:10.2528/PIERB12062908 Google Scholar
5. Emadi, J., L. Young, and K. Rajashekara, "Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles," IEEE Trans. Ind. Electron., Vol. 55, No. 6, 2237-2245, Jan. 2008.
doi:10.1109/TIE.2008.922768 Google Scholar
6. Gao, D. W., C. Mi, and A. Emadi, "Modeling and simulation of electric and hybrid vehicles," Proc. IEEE, Vol. 95, No. 4, 729-745, Apr. 2007.
doi:10.1109/JPROC.2006.890127 Google Scholar
7. Mizutani, R., "The present state and issues of the motor employed in Toyota HEVs," Proc. of the 29th Symposium on Motor Technology in Techno-Frontier, E3-2-1-E3-2-20, 2009 (in Japanese). Google Scholar
8. Chan, C. C., "The state of the art of electric and hybrid vehicles," Proc. IEEE, Vol. 90, No. 2, 247-275, Feb. 2002.
doi:10.1109/5.989873 Google Scholar
9. Jahns, T. M. and V. Blasko, "Recent advances in power electronics technology for industrial and traction machine drives," Proc. IEEE, Vol. 89, No. 6, 963-975, Jun. 2001.
doi:10.1109/5.931496 Google Scholar
10. Wang, T., P. Zheng, and S. Cheng, "Design characteristics of the induction motor used for hybrid electric vehicle," IEEE Trans. Magn., Vol. 41, No. 1, 505-508, Jan. 2005.
doi:10.1109/TMAG.2004.838967 Google Scholar
11. Malan, J. and M. J. Kamper, "Performance of a hybrid electric vehicle using reluctance synchronous machine technology," IEEE Trans. Ind. Appl., Vol. 37, No. 5, 1319-1324, Sep./Oct. 2001.
doi:10.1109/28.952507 Google Scholar
12. Rahman, K. M., B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, "Advantages of switched reluctance motor applications to EV and HEV: Design and control issues," IEEE Trans. Ind. Appl., Vol. 36, No. 1, 111-121, Jan./Feb. 2000.
doi:10.1109/28.821805 Google Scholar
13. Xue, X. D., K. W. E. Cheng, T. W. Ng, and N. C. Cheung, "Multi-objective optimization design of inwheel switched reluctance motors in electric vehicles," IEEE Trans. Ind. Electron., Vol. 57, No. 9, 2980-2987, Sep. 2010.
doi:10.1109/TIE.2010.2051390 Google Scholar
14. Geldhof, K. R., A. P. M. Van den Bossche, and J. A. Melkebeek, "Rotor-position estimation of switched reluctance motors based on damped voltage resonance," IEEE Trans. Ind. Electron., Vol. 57, No. 9, 2954-2960, Sep. 2010.
doi:10.1109/TIE.2009.2038399 Google Scholar
15. Kano, Y. and T. Mano, "Design of slipring-less winding excited synchronous motor for hybrid electric vehicle," IEEE 15th International Conference on Electrical Machines and Systems (ICEMS), 1-5, 2012. Google Scholar
16. Kamiya, M., "Development of traction drive motors for the Toyota hybrid systems," IEEJ Trans. Ind. Appl., Vol. 126, No. 4, 473-479, Apr. 2006.
doi:10.1541/ieejias.126.473 Google Scholar
17. Sulaiman, E., T. Kosaka, and N. Matsui, "Design and analysis of high-power/high-torque density dual excitation switched-flux machine for traction drive in HEVs," Renewable and Sustainable Energy Reviews, Vol. 34, 517-524, 2014.
doi:10.1016/j.rser.2014.03.030 Google Scholar
18. Dorrell, D., L. Parsa, and I. Boldea, "Automotive electric motors, generators, and actuator drive systems with reduced or no permanent magnets and innovative design concepts," IEEE Transactions on Industrial Electronics, Vol. 61, No. 10, 5693-5694, Oct. 2014.
doi:10.1109/TIE.2014.2307839 Google Scholar
19. Pollock, C. and M. Wallace, "The flux switching motor, a DC motor without magnets or brushes," Proc. Conf. Rec. IEEE IAS Annual Meeting, Vol. 3, 1980-1987, 1999. Google Scholar
20. Pollock, H., C. Pollock, R. T. Walter, and B. V. Gorti, "Low cost, high power density,flux switching machines and drives for power tools," Proc. Conf. Rec. IEEE IAS Annual Meeting, 1451-1457, 2003. Google Scholar
21. Pollock, C., H. Pollock, and M. Brackley, "Electronically Controlled flux switching motors: A comparison with an induction motor driving an axial fan," Proc. Conf. Rec. IEEE IAS Annual Meeting, 2465-2470, 2003. Google Scholar
22. Pollock, C., H. Pollock, R. Barron, J. R. Coles, D. Moule, A. Court, and R. Sutton, "Flux-switching motors for automotive applications," IEEE Trans. Ind. Appl., Vol. 42, No. 5, 1177-1184, Sep./Oct. 2006.
doi:10.1109/TIA.2006.880842 Google Scholar
23. Bangura, J. F., "Design of high-power density and relatively high efficiency fluxswitching motor," IEEE Trans. Energy Convers., Vol. 21, No. 2, 416-424, Jun. 2006.
doi:10.1109/TEC.2006.874243 Google Scholar
24. Zho, Y. J. and Z. Q. Zhu, "Comparison of low-cost single-phase wound-field switched-flux machines," 2013 IEEE International Electric Machines & Drives Conference (IEMDC), 1275-1282, 2013.
doi:10.1109/IEMDC.2013.6556298 Google Scholar
25. Omar, M. F., E. Sulaiman, and H. A. Soomro, "New topology of single-phase field excitation flux switching machine for high density air-condition with segmental rotor," Applied Mechanics and Materials, Vol. 695, 783-786, 2015. Google Scholar
26. Husin, Z. A., E. Sulaiman, F. Khan, M. M. A. Mazlan, and S. N. U. Zakaria, "Design of low cost single phase 8S-8P field excitation flux switching motor for hybrid electric vehicles," Journal of Applied Science and Agriculture, Vol. 9, No. 18, 126-131, 2014. Google Scholar
27. Chen, J. T., Z. Q. Zhu, S. Iwasaki, and R. Deodhar, "Low cost flux-switching brushless AC machines," Proc. IEEE Vehicle Power and Propulsion Conf., VPPC 2010, 1-6, Lille, France, Sep. 2010. Google Scholar
28. Zulu, A., B. C. Mecrow, and M. Armstrong, "Topologies for three-phase wound field segmentedrotor flux switching machines," 5th IET International Conference on Power Electronics, Machines and Drives (PEMD), 1-6, 2010. Google Scholar
29. Sulaiman, E., M. F. M. Teridi, Z. A. Husin, M. Z. Ahmad, and T. Kosaka, "Performance comparison of 24S-10P and 24S-14P field excitation flux switching machine with single DC-coil polarity," Proc. on Int. Power Eng. & Optimization Conf., 46-51, 2013. Google Scholar
30. Tang, Y., J. J. H. Paulides, T. E. Motoasca, and E. A. Lomonova, "Flux-switching machine with DC excitation," IEEE Transactions on Magnetics, Vol. 48, No. 11, 3583-3586, Nov. 2012.
doi:10.1109/TMAG.2012.2199100 Google Scholar
31. Fei, W., P. Chi, K. Luk, S. Member, J. X. Shen, Y. Wang, and M. Jin, "A novel permanent-magnet flux switching machine with an outer-rotor configuration for in-wheel light traction applications," IEEE Transactions on Industry Applications, Vol. 48, No. 5, 1496-1506, 2012.
doi:10.1109/TIA.2012.2210009 Google Scholar
32. Othman, S. M. N. S. and E. Sulaiman, "Design study of 3-phase field-excitation flux switching motor with outer-rotor configuration," IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014), 230-234, Mar. 2014. Google Scholar
33. Lukic, S. M. and A. Emadi, "State-switching control technique for switched reluctance motor drives: Theory and implementation," IEEE Trans. Ind. Electron., Vol. 57, No. 9, 2932-2938, Sep. 2010.
doi:10.1109/TIE.2009.2038942 Google Scholar
34. Demerdash, N. A. and J. F. Bangura, "Characterization of induction motors in adjustable-speed drives using a time-stepping coupled finite-element state-space method including experimental validation," IEEE Trans. Ind. Appl., Vol. 35, No. 4, 790-802, Aug. 1999.
doi:10.1109/28.777186 Google Scholar
35. Bangura, J. F. and N. A. Demerdash, "Simulation of inverter-fed induction motor drives with pulse-width modulation by a time-stepping coupled finite element flux linkage-based state space model," IEEE Trans. Energy Convers., Vol. 14, No. 3, 518-525, Sep. 1999.
doi:10.1109/60.790908 Google Scholar
36. Hameyer, K., F. Henrotte, H. V. Sande, G. Deliege, and H. De Gersem, "Finite element models in electrical machine design," Proceeding of Int. Conf. CB Mag., 13, Gramado, Brasil, Nov. 2002. Google Scholar
37. Sulaiman, E., T. Kosaka, and N. Matsui, "Design optimization and performance of a novel 6-Slot 5-Pole PMFSM with hybrid excitation for hybrid electric vehicle," IEE J. Trans. on Industry Appl., Vol. 132, No. 2, Sec. D, 211-218, 2012.
doi:10.1541/ieejias.132.211 Google Scholar
38. Zulu, A., B. C. Mecrow, and M. Armstrong, "A wound-field three-phase flux-switching synchronous motor with all excitation sources on the stator," IEEE Trans. Ind. Appl., Vol. 46, No. 6, 2363-2371, Nov. 2010.
doi:10.1109/TIA.2010.2072972 Google Scholar
39. Oguz, Y. and M. Dede, "Speed estimation of vector controlled squirrel cage asynchronous motor with artificial neural networks," Energy Conversion and Management, Vol. 52, No. 1, 675-686, 2011.
doi:10.1016/j.enconman.2010.07.046 Google Scholar
40. Yang, Z., F. Shang, I. P. Brown, and M. Krishnamurthy, "Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications," IEEE Transactions on Transportation Electrication, Vol. 1, No. 3, 245-254, Oct. 2015.
doi:10.1109/TTE.2015.2470092 Google Scholar
41. Khan, F., E. Sulaiman, and M. Z. Ahmad, "Review of switched flux wound-field machines technology," IETE Technical Review, Jun. 2016, DOI: 10.1080/02564602.2016.1190304. Google Scholar
42. Lee, S. T. and L. M. Tolbert, "Study of various slanted air-gap structures of interior permanent magnet synchronous motor with brushless field excitation," IEEE Energy Conversion Congress and Exposition, 1686-1692, Atlanta, GA, 2010. Google Scholar