Vol. 70
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-12-12
Design of a Microstrip Filtering Balun with a Wide Stopband
By
Progress In Electromagnetics Research C, Vol. 70, 63-72, 2016
Abstract
A microstrip filtering balun with a wide stopband is presented. Its filtering function is realized by four meandering stepped impedance resonators (SIRs). Except for an identical fundamental-mode resonant frequency, the SIRs have different high-order resonant frequencies. Thus, the parasitic passbands are suppressed, and a wide stopband is achieved. The unbalance-to-balance transition is accomplished by introducing two coupling output ports at two symmetry positions of the output SIR. The voltages at symmetrical positions have equal magnitudes and opposite phases, thus, signals coupled from the symmetry positions also have equal magnitude and opposite phase, i.e., balanced output signals are achieved. A more general design approach is discussed in detail, and the proposed approach is similar to the design method of the conventional filter except that a small modification is made. Additionally, two kinds of external coupling structures, microstrip coupling lines and tapped line, are compared in terms of stopband performance. The comparison shows that better stopband performance is observed when utilizing the microstrip coupling lines as the external coupling structure. A filtering balun with central frequency of 2.4 GHz and Chebyshev frequency response is designed, fabricated and measured. The measured results give a reasonable agreement with the simulated ones, which verifies the effectiveness of the filtering balun.
Citation
Jun-Mei Yan, Liangzu Cao, and Hai-Ying Zhou, "Design of a Microstrip Filtering Balun with a Wide Stopband," Progress In Electromagnetics Research C, Vol. 70, 63-72, 2016.
doi:10.2528/PIERC16093003
References

1. Lin, S., J. Wang, G. Zhang, and J. Hong, "Design of microstrip tri-mode balun bandpass filter with high selectivity," Electron. Lett., Vol. 51, No. 13, 998-999, 2015.
doi:10.1049/el.2015.1047

2. Nam, H., T.-S. Yun, and J.-C. Lee, "A broadband microstrip Marchand balun with vertical coupling structure," Microw. Opt. Technol. Lett., Vol. 49, No. 4, 752-755, 2007.
doi:10.1002/mop.22281

3. Park, M.-J. and B. Lee, "Stubbed branch line balun," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 3, 169-171, 2007.
doi:10.1109/LMWC.2006.890445

4. Li, J. L., S. W. Qu, and Q. Xue, "Miniaturised branch-line balun with bandwidth enhancement," Electron. Lett., Vol. 43, No. 17, 931-932, 2007.
doi:10.1049/el:20071074

5. Pu, X. Y., X. Y. Zhou, S. Y. Zheng, and Y. L. Long, "Wide band balun filter using open/shorted coupled line sections," Microw. Opt. Technol. Lett., Vol. 57, No. 5, 1099-1101, 2015.
doi:10.1002/mop.29017

6. Jung, E.-Y. and H.-Y. Hwang, "A balun-BPF using a dual mode ring resonator," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 9, 652-654, 2007.
doi:10.1109/LMWC.2007.903442

7. Gao, S. S. and S. Sun, "Compact dual-mode balun bandpass filter with improved upper stopband performance," Electron. Lett., Vol. 47, No. 23, 1281-1283, 2011.
doi:10.1049/el.2011.2879

8. Kang, S. J. and H. Y. Hwang, "Ring-balun-bandpass filter with harmonic suppression," IET Microw. Antennas Propag., Vol. 4, No. 11, 1847-1854, 2010.
doi:10.1049/iet-map.2009.0295

9. Cheong, P., T.-S. Lv, W.-W. Choi, and K.-W. Tam, "A compact microstrip square-loop dual-mode balun-bandpass filter with simultaneous spurious response suppression and differential performance improvement," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 2, 77-79, 2011.
doi:10.1109/LMWC.2010.2099650

10. Sun, S. and W. Menzel, "Novel dual-mode balun bandpass filters using single cross-slotted patch resonator," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 8, 415-417, 2011.
doi:10.1109/LMWC.2011.2158535

11. Hui, J. N., W. J. Feng, and W. Q. Che, "Balun bandpass filter based on multilayer substrate integrated waveguide power divider," Electron. Lett., Vol. 48, No. 10, 571-573, 2012.
doi:10.1049/el.2012.0479

12. Jiang, W., L. Zhou, A. M. Gao, W. Shen, W. Y. Yin, and J.-F. Mao, "Compact dual-mode dualband balun filter using double-sided parallel-strip line," Electron. Lett., Vol. 48, No. 21, 1351-1352, 2012.
doi:10.1049/el.2012.2662

13. Hao, Z.-C., W.-Q. Ding, and X.-P. Huo, "A wideband high selectivity filtering balun," Microw. Opt. Technol. Lett., Vol. 57, No. 5, 1107-1110, 2015.
doi:10.1002/mop.29030

14. Leong, Y. C., K. S. Ang, and C. H. Lee, "A derivation of a class of 3-port baluns from symmetrical 4-port networks," IEEE MTT-S Int. Microwave Symp. Digest, 1165-1168, 2002.

15. Wu, C.-H., C.-Y. Wang, and C. H. Chen, "Balanced-to-unbalanced bandpass filters and the antenna application," IEEE Trans. Micro. Theory Tech., Vol. 56, No. 11, 2474-2482, 2008.
doi:10.1109/TMTT.2008.2005888

16. Yang, T., M. Tamura, and T. Itoh, "Compact hybrid resonator with series and shunt resonances used in miniaturized filters and balun filters," IEEE Trans. Micro. Theory Tech., Vol. 58, No. 2, 390-402, 2010.
doi:10.1109/TMTT.2009.2038662

17. Huang, G.-S. and C. H. Chen, "Dual-band balun bandpass filter with hybrid structure," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 7, 356-358, 2011.
doi:10.1109/LMWC.2011.2144965

18. Feng, W.-J. and W. Che, "Wideband balun bandpass filter based on a differential circuit," IEEE MTT-S Int. Microwave Symp. Digest, 1-3, 2012.

19. He, Y. and L. Sun, "Dual-band balun bandpass filter using coupled lines with shunt open-ended stubs," Microw. Opt. Technol. Lett., Vol. 56, No. 10, 2358-2360, 2014.
doi:10.1002/mop.28589

20. Yeung, L. K. and K.-L. Wu, "A dual-band coupled-line balun filter," IEEE Trans. Micro. Theory Tech., Vol. 55, No. 11, 2406-2411, 2007.
doi:10.1109/TMTT.2007.907402

21. Armando, F.-P., A. Lujambio, J. Martel, F. Medina, F. Mesa, and R. R. Boix, "Simple and compact balanced bandpass filters based on magnetically coupled resonators," IEEE Trans. Micro. Theory Tech., Vol. 63, No. 6, 1843-1853, 2015.
doi:10.1109/TMTT.2015.2424229

22. Wu, C.-H., C.-H. Wang, and C. H. Chen, "Balanced coupled-resonator bandpass filters using multisection resonators for common-mode suppression and stopband extension," IEEE Trans. Micro. Theory Tech., Vol. 55, No. 8, 1756-1763, 2007.
doi:10.1109/TMTT.2007.901609

23. Wu, L.-S., Y.-X. Guo, J.-F. Mao, and W.-Y. Yin, "Design of a substrate integrated waveguide balun filter based on three-port coupled-resonator circuit model," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 5, 252-254, 2011.
doi:10.1109/LMWC.2011.2116776

24. Hong, J. S. and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications, John Wiley & Sons, 2001.
doi:10.1002/0471221619