1. Fnjimoto, K., A. Henderson, K. Hirasawa, and J. R. James, Small Antennas, John Wiley & Sons, 1987.
2. Skrivervik, A. K., J.-F. Zurcher, O. Staub, and J. R. Mosig, "PCS antenna design: The challenge of miniaturization," IEEE Antennas and Propagation Magazine, Vol. 43, No. 4, 12-26, Aug. 200.
doi:10.1109/74.951556 Google Scholar
3. Maci, S. and G. Biffi Gentili, "Dual-frequency patch antennas," IEEE Antennas and Propagation Magazine, Vol. 39, No. 6, 13-20, Dec. 1997.
doi:10.1109/74.646798 Google Scholar
4. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman, 1983.
5. Jaggard, D. L., "On fractal electrodynamics," Recent Advances in Electromagnetic Theory, H. N. Kritikos and D. L. Jaggard (eds.), 183-224, Springer-Verlag, New York, 1990. Google Scholar
6. Werner, D. H., "An overview of fractal electrodynamics research," Proceedings of the 11th Annual Review of Progress in Applied Computational Electromagnetics (ACES), Vol. 2, 964-969, 1995. Google Scholar
7. Jaggard, D. L., "Fractal electrodynamics: Wave interactions with discretely self-similar structures," Electromagnetic Symmetry, C. Baum and H. Kritikos (eds.), 231-281, Taylor and Francis Publishers, Washington DC, 1995. Google Scholar
8. Jaggard, D. L., "Fractal electrodynamics: From super antennas to superlattices," Fractals in Engineering, J. L. Vehel, E. Lutton, and C. Tricot (eds.), 204-221, Springer-Verlag, New York, 1997. Google Scholar
9. Kim, Y. and D. L. Jaggard, "The fractal random array," Proceedings of the IEEE, Vol. 74, No. 9, 1278-1280, 1986.
doi:10.1109/PROC.1986.13617 Google Scholar
10. Anuradha, A. Patnaik and S. N. Sinha, "Design of custom-made fractal multi-band antennas using ANN-PSO," IEEE Antennas and Propagation Magazine, Vol. 53, No. 4, 94-101, Aug. 2011.
doi:10.1109/MAP.2011.6097296 Google Scholar
11. Werner, D. H., P. L. Werner, and K. H. Church, "Genetically engineered multiband fractal antenna," Electronics Letters, Vol. 37, No. 19, 1150-1151, Sep. 2001.
doi:10.1049/el:20010802 Google Scholar
12. Pantoja, M. F., F. G. Ruiz, A. R. Bretones, R. G. Martin, J. M. Gonzalez-Arbesu, J. Romeu, and J. M. Rius, "GA design of wire pre-fractal antennas and comparison with other Euclidean geometries," IEEE Antennas and Wireless Propagation Letters, Vol. 2, No. 1, 238-241, 2003.
doi:10.1109/LAWP.2003.819694 Google Scholar
13. Azaro, R., E. Zeni, M. Zambelli, and A. Massa, "Synthesis and optimization of pre-fractal multiband antennas," European Conference on Antennas and Propagation, 1-5, 2006. Google Scholar
14. Gregory, M. D., J. S. Petko, T. G. Spence, and D. H. Werner, "Nature-inspired design techniques for ultra-wideband aperiodic antenna arrays," IEEE Antennas and Propagation Magazine, Vol. 52, No. 3, 28-45, 2010.
doi:10.1109/MAP.2010.5586571 Google Scholar
15. Oliveira, E. E. C., M. S. Vieira, W. C. Araujo, P. Carlos, and A. G. D’Assuncao, "Optimization of the input impedance of Koch prefractals antennas with genetic algorithms," International Microwave and Optoelectronics Conference, 1-4, 2015. Google Scholar
16. Guney, K. and N. Sarikaya, "A hybrid method based on combining artificial neural network and fuzzy inference system for simultaneous computation of resonant frequencies of rectangular, circular and triangular microstrip antennas," IEEE Trans. Antenna Propag., Vol. 55, 659-668, 2007.
doi:10.1109/TAP.2007.891566 Google Scholar
17. Kapetanakis, T. N., I. O. Vardiambasis, G. S. Liodakis, and A. Maras, "Solving the inverse loop antenna radiation problem using a hybrid neuro-fuzzy system," Telecommunications Forum, 1189-1192, 2012. Google Scholar
18. Gehani, A. and D. A. Pujara, "Predicting the return loss performance of a hexa-band PIFA using ANFIS," Microw. Opt. Technol. Lett., Vol. 57, 2072-2075, 2015.
doi:10.1002/mop.29277 Google Scholar
19. Pujara, D. A., A. Modi, N. Pisharody, and J. Mehta, "Predicting the performance of pyramidal and corrugated horn antennas using ANFIS," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 293-296, 2014.
doi:10.1109/LAWP.2014.2305518 Google Scholar
20. Guney, K. and N. Sarikaya, "Resonant frequency calculation for circular microstrip antennas with a dielectric cover using adaptive network-based fuzzy inference system optimized by various algorithms," Progress In Electromagnetics Research, Vol. 72, 279-306, 2007.
doi:10.2528/PIER07031302 Google Scholar
21. Turkmen, M., S. Kaya, C. Yildiz, and K. Guney, "Adaptive neuro-fuzzy models for conventional coplanar waveguides," Progress In Electromagnetics Research B, Vol. 6, 93-107, 2008.
doi:10.2528/PIERB08031208 Google Scholar
22. Sarikaya, N., K. Guney, and C. Yildiz, "Adaptive neuro-fuzzy inference system for the computation of the characteristic impedance and the effective permittivity of the micro-coplanar strip line," Progress In Electromagnetics Research B, Vol. 6, 225-237, 2008.
doi:10.2528/PIERB08031223 Google Scholar
23. Jang, J.-S. R., "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Transactions on System, Man and Cybernetics, Vol. 23, 665-685, 1993.
doi:10.1109/21.256541 Google Scholar
24. ANSYS High Frequency Structure Simulator, 2015.
25. Kisi, O., J. Shiri, and B. Nikoofar, "Forecasting daily lake levels using artificial intelligence approaches," Computers & Geosciences, Vol. 41, 169-180, 2011. Google Scholar