1. Paul, C. R., Introduction to Electromagnetic Compatibility, 2nd Ed., John Wiley & Sons Inc, 2006.
2. Henry, W. O., "Electromagnetic Compatibility Engineering," Wiley Interscience, 2009. Google Scholar
3. Gomory, F., M. Solovyov, J. Souc, et al. "Experiment realization of a magnetic cloak," Science, Vol. 335, No. 6075, 1466-1468, 2012.
doi:10.1126/science.1218316 Google Scholar
4. Araneo, R. and G. Lovat, "An efficient MoM formulation for the evaluation of the shielding effectiveness of rectangular enclosures with thin and thick apertures," IEEE Trans. Electromagn. Compat., Vol. 50, No. 2, 294-304, 2008.
doi:10.1109/TEMC.2008.919031 Google Scholar
5. Robinson, M. P., T. M. Benson, C. Christopoulos, et al. "Analytical formulation for the shielding effectiveness of enclosures with apertures," IEEE Trans. Electromagn. Compat., Vol. 40, No. 240, 240-248, 1998.
doi:10.1109/15.709422 Google Scholar
6. Hao, J.-H., P.-H. Qi, J.-Q. Fan, and Y.-Q. Guo, "Analysis of shielding effectiveness of enclosures with apertures and inner windows with TLM," Progress In Electromagnetic Research M, Vol. 32, 73-82, 2013.
doi:10.2528/PIERM13060312 Google Scholar
7. Tharf, M. S. and G. I. Costache, "A hybrid finite element-analytical solutions for in-homogeneously filled shielding enclosures," IEEE Trans. Electromagn. Compat., Vol. 36, No. 4, 380-385, 1994.
doi:10.1109/15.328870 Google Scholar
8. Bethe, H. A., "Theory of diffraction by small holes," Phy. Rev. II, Vol. 66, No. 7 and 8, 163-182, 1944.
doi:10.1103/PhysRev.66.163 Google Scholar
9. Nitsch, J., S. Tkachenko, and S. Pottast, "Pulsed excitation of resonators," Interaction Note, Note 619, 2010. Google Scholar
10. Anderieu, G., J. Panh, A. Reineix, P. Pelissou, et al. "Homogenization of composite panels from a near-field magnetic shielding effectiveness measurement," IEEE Trans. Electromagn. Compat., Vol. 54, No. 3, 700-703, 2012.
doi:10.1109/TEMC.2012.2186455 Google Scholar
11. Chen, M.-D., X.-H. Xie, and H.-Y. Zhang, "Simulation and calculation of the absorbing microwave properties of carbon nanotube composite coating," Acta Physica Sinica, Vol. 63, No. 6, 0661031-0661036, 2014. Google Scholar
12. Jiao, C.-Q., "Shielding effectiveness improvement of metallic waveguide tube by using wall losses," IEEE Trans. Electromagn. Compat., Vol. 54, No. 3, 696-699, 2012.
doi:10.1109/TEMC.2012.2187663 Google Scholar
13. Konefal, T., J. F. Dawson, A. C. Martin, et al. "A fast circuit model description of the shielding effectiveness of a box with imperfect gaskets or apertures covered by thin resistive sheet coatings," IEEE Trans. Electromagn. Compat., Vol. 48, No. 1, 134-144, 2006.
doi:10.1109/TEMC.2006.870703 Google Scholar
14. Tesche, F. M., M. V. Ianoz, and T. Karlsson, "EMC Analysis Methods and Computational Models," Wiley Inter Science, 1996. Google Scholar
15. Deshpande, M. D., "Electromagnetic field penetration studies," NASA Technical Paper, June 2000. Google Scholar
16. Jiao, C.-Q. and Y.-Y. Li, "Reciprocity principled-based model for shielding effectiveness prediction of a rectangular cavity with a covered aperture," Chinese Physics B, Vol. 24, No. 10, 1041011-1041016, 2015.
doi:10.1088/1674-1056/24/10/104101 Google Scholar
17. Dehkhoda, P., A. Tavakoli, and R. Moini, "Shielding effectiveness of a rectangular enclosure with finite wall thickness and rectangular apertures by the generalised modal method of moments," IET Science, Measurement and Technology, Vol. 3, No. 2, 123-136, 2009.
doi:10.1049/iet-smt:20080036 Google Scholar
18. Khan, Z. A., C. F. Bunting, M. D. Deshpande, et al. "Validation of Modal/MoM in shielding effectiveness studies of rectangular enclosures with apertures," IEEE Trans. Electromagn. Compat., Vol. 48, No. 2, 348-353, 2006.
doi:10.1109/TEMC.2006.873864 Google Scholar