1. Fear, E. C., "Microwave imaging of the breast," Technol. Cancer Res. Treat., Vol. 4, 69-82, 2005.
doi:10.1177/153303460500400110 Google Scholar
2. Lazebnik, M., L. McCartney, D. Popovic, C. B.Watkins, M. J. Lindstrom, J. Harter, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001 Google Scholar
3. Lazebnik, M., D. Popovic, L. McCartney, C. B.Watkins, M. J. Lindstrom, J. Harter, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
4. Hassan, A. M. and M. El-Shenawee, "Review of electromagnetic techniques for breast cancer detection," IEEE Rev. Biomed. Eng., Vol. 4, 103-118, 2011.
doi:10.1109/RBME.2011.2169780 Google Scholar
5. Mojabi, P., M. Ostadrahimi, L. Shafai, and J. LoVetri, "Microwave tomography techniques and algorithms: A review," Proc. 15th Int. Symp. Antenna Technology and Applied Electromagnetics, 2012. Google Scholar
6. Fang, Q., P. M. Meaney, S. D. Geimer, A. V. Streltsov, and K. D. Paulsen, "Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation," IEEE Trans. Med. Imag., Vol. 23, 475-484, 2004.
doi:10.1109/TMI.2004.824152 Google Scholar
7. Rubak, T., P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using Gauss-Newton's method and the CGLS inversion algorithm," IEEE Trans. Antennas Propag., Vol. 55, 2320-2331, 2007.
doi:10.1109/TAP.2007.901993 Google Scholar
8. Meaney, P. M., M. W. Fanning, R. M. di Florio-Alexander, P. A. Kaufman, S. D. Geimer, T. Zhou, et al. "Microwave tomography in the context of complex breast cancer imaging," Conf. Proc. IEEE Eng. Med. Biol. Soc., 3398-3401, 2010. Google Scholar
9. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. Van Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Med. Phys., Vol. 37, 4210-4226, 2010.
doi:10.1118/1.3443569 Google Scholar
10. Johnson, J. E., T. Takenaka, and T. Tanaka, "Two-dimensional time-domain inverse scattering for quantitative analysis of breast composition," IEEE Trans. Biomed. Eng., Vol. 55, 1941-1945, 2008.
doi:10.1109/TBME.2007.899364 Google Scholar
12. Zhou, H., T. Takenaka, J. E. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001 Google Scholar
13. Donelli, M., I. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2011.
doi:10.2528/PIERM11040903 Google Scholar
14. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089 Google Scholar
15. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach," IEEE Trans. Geosci. Remote Sens., Vol. 44, 3527-3539, 2006.
doi:10.1109/TGRS.2006.881753 Google Scholar
16. Golnabi, A. H., P. M. Meaney, S. D. Geimer, and K. D. Paulsen, "Comparison of no-prior and soft-prior regularization in biomedical microwave imaging," J. Med. Phys., Vol. 36, 159-170, 2011.
doi:10.4103/0971-6203.83482 Google Scholar
17. Golnabi, A. H., P. M. Meaney, and K. D. Paulsen, "Tomographic microwave imaging with incorporated prior spatial information," IEEE Trans. Microw. Theory Techn., Vol. 61, 2129-2136, 2013.
doi:10.1109/TMTT.2013.2247413 Google Scholar
18. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of non-measurable equivalent currents for the imaging of dielectric objects," Inverse Probl., Vol. 25, 2009. Google Scholar
19. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, 812-822, 2002.
doi:10.1109/TBME.2002.800759 Google Scholar
20. Li, X., S. K. Davis, S. C. Hagness, D. W. Van der Weide, and B. D. Van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microw. Theory Techn., Vol. 52, 1856-1865, 2004.
doi:10.1109/TMTT.2004.832686 Google Scholar
21. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microw. Compon. Lett., Vol. 11, 130-132, 2001. Google Scholar
22. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas Propag., Vol. 51, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446 Google Scholar
23. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Trans. Microw. Theory Techn., Vol. 51, 887-892, 2003.
doi:10.1109/TMTT.2003.808630 Google Scholar
24. Abbosh, A. M., B. Mohammed, and K. S. Bialkowski, "Differential microwave imaging of the breast pair," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1434-1437, 2016.
doi:10.1109/LAWP.2015.2512260 Google Scholar
25. Fear, E. C. and M. A. Stuchly, "Microwave detection of breast tumors: Comparison of skin subtraction algorithms," J. Subsurface Sensing Technologies and Applications, Vol. 4129, 207-217, 2000.
doi:10.1117/12.390618 Google Scholar
26. Maklad, B. and E. C. Fear, "Reduction of skin reflections in radar-based microwave breast imaging," Conf. Proc. IEEE Eng. Med. Biol. Soc., Vol. 1-8, 21-24, 2008. Google Scholar
27. Fear, E. C., J. Bourqui, C. Curtis, D. Mew, B. Docktor, and C. Romano, "Microwave breast imaging with a monostatic radar-based system: A study of application to patients," IEEE Trans. Microw. Theory Techn., Vol. 61, 2119-2128, 2013.
doi:10.1109/TMTT.2013.2255884 Google Scholar
28. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Q. Fang, C. A. Kogel, et al. "Initial clinical experience with microwave breast imaging in women with normal mammography," Acad. Radiol., Vol. 14, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016 Google Scholar
29. Poplack, S. P., T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, et al. "Electromagnetic breast imaging: Results of a pilot study in women with abnormal mammograms," Radiology, Vol. 243, 350-359, 2007.
doi:10.1148/radiol.2432060286 Google Scholar
30. Shea, J. D., P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Contrast-enhanced microwave imaging of breast tumors: A computational study using 3D realistic numerical phantoms," Inverse Probl., Vol. 26, 2010. Google Scholar
31. Henriksson, T., M. Klemm, D. Gibbins, J. Leendertz, T. Horseman, A. W. Preece, et al. "Clinical trials of a multistatic UWB radar for breast imaging," Loughborough Antennas and Propagation Conference, 2011. Google Scholar
32. Bourqui, J., J. M. Sill, and E. C. Fear, "A prototype system for measuring microwave frequency reflections from the breast," Int. J. Biomed. Imaging, Vol. 2012, article ID 851234, 2012. Google Scholar
33. Wang, Y., Seismic Inverse Q Filtering, Blackwell Publishing Ltd, 2008.
34. Margrave, G. F., M. P. Lamoureux, and D. C. Henley, "Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data," Geophysics, Vol. 76, W15-W30, 2011.
doi:10.1190/1.3560167 Google Scholar
35. Margrave, G. F., L. Dong, P. Gibson, J. Grossman, D. C. Henley, and M. P. Lamoureux, "Gabor deconvolution: Extending Wiener's method to non-stationarity," CSEG Recorder, Vol. 28, No. 10, 5-12, 2003. Google Scholar
36. Perz, M., L. Mewhort, G. F. Margrave, and L. Ross, "Gabor deconvolution: Real and synthetic data experiences," CSEG National Convention, Calgary, AB, Canada, 2005. Google Scholar
37. Ferguson, R. J. and G. F. Margrave, "Attenuation compensation for georadar data by Gabor deconvolution," CREWES Res. Report, Vol. 24, No. 18, 2012. Google Scholar
38. Robinson, E. A., "Predictive decomposition of time series with application to seismic exploration," Geophysics, Vol. 32, 418-484, 1967.
doi:10.1190/1.1439873 Google Scholar
39. Robinson, E. A. and S. Treitel, "Principles of digital Wiener filtering*," Geophys. Prospect., Vol. 15, 311-332, 1967.
doi:10.1111/j.1365-2478.1967.tb01793.x Google Scholar
40. Kjartansson, E., "Constant Q-wave propagation and attenuation," J. Geophys. Res., Vol. 84, 4737-4748, 1979.
doi:10.1029/JB084iB09p04737 Google Scholar
41. Turner, G. and A. F. Siggins, "Constant Q-attenuation of subsurface radar pulses," Geophysics, Vol. 59, 1192-1200, 1994.
doi:10.1190/1.1443677 Google Scholar
42. Bano, M., "Constant dielectric losses of ground-penetrating radar waves," Geophys. J. Int., Vol. 124, 279-288, 1996.
doi:10.1111/j.1365-246X.1996.tb06370.x Google Scholar
43. Irving, J. D. and R. J. Knight, "Removal of wavelet dispersion from ground-penetrating radar data," Geophysics, Vol. 68, 960-970, 2003.
doi:10.1190/1.1581068 Google Scholar
44. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues. 3. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
45. Sheriff, R. E., Encyclopedic Dictionary of Exploration Geophysics, Society of Exploration Geophysics, 1984.
46. Aki, K. and P. G. Richards, Quantitative Seismology, University Science Books, 2002.
47. Von Hippel, A. R., Dielectrics and Waves, John Wiley & Sons Inc, 1959.
48. Stacey, F. D., M. T. Gladwin, B. McKavanagh, A. T. Linde, and L. M. Hastie, "Anelastic damping of acoustic and seismic pulses," Geophys. Surv., Vol. 2, 133-151, 1975.
doi:10.1007/BF01447906 Google Scholar
49. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2000.
50. Pozar, D. M., Microwave Engineering, John Wiley & Sons Inc, 2005.
51. Margrave, G. F., "Theory of nonstationary linear filtering in the Fourier domain with application to time-variant filtering," Geophysics, Vol. 63, 244-259, 1998.
doi:10.1190/1.1444318 Google Scholar
52. Yilmaz, O., Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data, Society of Exploration Geophysicists, 2001.
doi:10.1190/1.9781560801580
53. Bode, H. W., Network Analysis and Feedback Amplifier Design, Van Nostrand Company, Inc, 1945.
54. Claerbout, J. F., Fundamentals of Geophysical Data Processing, Blackwell ScientiFIc Publications, 1985.
55. Oppenheim, A. V. and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall Inc, 1989.
56. Margrave, G. F., D. C. Henley, M. P. Lamoureux, V. Iliescu, and J. P. Grossman, "A update on Gabor deconvolution," CREWES Res. Report, Vol. 14, No. 36, 2002. Google Scholar
57. Wadsworth, G. P., E. A. Robinson, J. G. Bryan, and P. M. Hurley, "Detection of reflections on seismic records by linear operators," Geophysics, Vol. 18, 539-586, 1953.
doi:10.1190/1.1437911 Google Scholar
58. Smith, A. D. and R. J. Ferguson, "Minimum-phase signal calculation using the real cepstrum," CREWES Res. Report, Vol. 26, No. 72, 2014. Google Scholar
59. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Trans. Antennas Propag., Vol. 58, 2318-2326, 2010.
doi:10.1109/TAP.2010.2048844 Google Scholar
60. Liu, K. Y., E. C. Fear, and M. E. Potter, "Antenna aperture localization for arrival time correction using first-break," Progress In Electromagnetics Research B, Vol. 62, 105-120, 2015.
doi:10.2528/PIERB14121908 Google Scholar