Vol. 72
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-02-02
Data Preconditioning with Gabor Nonstationary Deconvolution for Radar Imaging of Highly Dissipative and Dispersive Media
By
Progress In Electromagnetics Research B, Vol. 72, 169-195, 2017
Abstract
In medical microwave imaging applications, electromagnetic (EM) waves propagate through human tissues, which are inherently attenuative and dispersive. In the resulting image, these effects translate to a lack of resolution that increases with time/distance. To produce microwave images with high resolution, there is a strong need for a technique that is able to compensate for the energy loss and correct for the wavelet distortion. Gabor nonstationary deconvolution was developed in the field of Seismology to compensate for attenuation loss, correct phase dispersion, and produce images with high resolution. In this study, the Gabor algorithm is proposed to deal with the nonstationarity in EM wave propagation and attenuation. Gabor deconvolution is essentially based on the assumption that the anelastic attenuation of seismic waves can be described by a constant Q theory. We investigate the Q characterization of EM wave propagation, the frequency-dependency of EM Q, and the effectiveness of Gabor deconvolution to deal with high loss and dispersion. To accommodate for the EM application conditions, several adjustments are made to the proposed algorithm. Our test results indicate that Gabor nonstationary deconvolution is able to sufficiently compensate for attenuation loss and correct phase dispersion for EM waves that propagate through lossy and dispersive media.
Citation
Kay Yuhong Liu, Elise C. Fear, and Mike E. Potter, "Data Preconditioning with Gabor Nonstationary Deconvolution for Radar Imaging of Highly Dissipative and Dispersive Media," Progress In Electromagnetics Research B, Vol. 72, 169-195, 2017.
doi:10.2528/PIERB16102104
References

1. Fear, E. C., "Microwave imaging of the breast," Technol. Cancer Res. Treat., Vol. 4, 69-82, 2005.
doi:10.1177/153303460500400110        Google Scholar

2. Lazebnik, M., L. McCartney, D. Popovic, C. B.Watkins, M. J. Lindstrom, J. Harter, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001        Google Scholar

3. Lazebnik, M., D. Popovic, L. McCartney, C. B.Watkins, M. J. Lindstrom, J. Harter, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002        Google Scholar

4. Hassan, A. M. and M. El-Shenawee, "Review of electromagnetic techniques for breast cancer detection," IEEE Rev. Biomed. Eng., Vol. 4, 103-118, 2011.
doi:10.1109/RBME.2011.2169780        Google Scholar

5. Mojabi, P., M. Ostadrahimi, L. Shafai, and J. LoVetri, "Microwave tomography techniques and algorithms: A review," Proc. 15th Int. Symp. Antenna Technology and Applied Electromagnetics, 2012.        Google Scholar

6. Fang, Q., P. M. Meaney, S. D. Geimer, A. V. Streltsov, and K. D. Paulsen, "Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation," IEEE Trans. Med. Imag., Vol. 23, 475-484, 2004.
doi:10.1109/TMI.2004.824152        Google Scholar

7. Rubak, T., P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using Gauss-Newton's method and the CGLS inversion algorithm," IEEE Trans. Antennas Propag., Vol. 55, 2320-2331, 2007.
doi:10.1109/TAP.2007.901993        Google Scholar

8. Meaney, P. M., M. W. Fanning, R. M. di Florio-Alexander, P. A. Kaufman, S. D. Geimer, T. Zhou, et al. "Microwave tomography in the context of complex breast cancer imaging," Conf. Proc. IEEE Eng. Med. Biol. Soc., 3398-3401, 2010.        Google Scholar

9. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. Van Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Med. Phys., Vol. 37, 4210-4226, 2010.
doi:10.1118/1.3443569        Google Scholar

10. Johnson, J. E., T. Takenaka, and T. Tanaka, "Two-dimensional time-domain inverse scattering for quantitative analysis of breast composition," IEEE Trans. Biomed. Eng., Vol. 55, 1941-1945, 2008.
doi:10.1109/TBME.2007.899364        Google Scholar

12. Zhou, H., T. Takenaka, J. E. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001        Google Scholar

13. Donelli, M., I. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2011.
doi:10.2528/PIERM11040903        Google Scholar

14. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089        Google Scholar

15. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach," IEEE Trans. Geosci. Remote Sens., Vol. 44, 3527-3539, 2006.
doi:10.1109/TGRS.2006.881753        Google Scholar

16. Golnabi, A. H., P. M. Meaney, S. D. Geimer, and K. D. Paulsen, "Comparison of no-prior and soft-prior regularization in biomedical microwave imaging," J. Med. Phys., Vol. 36, 159-170, 2011.
doi:10.4103/0971-6203.83482        Google Scholar

17. Golnabi, A. H., P. M. Meaney, and K. D. Paulsen, "Tomographic microwave imaging with incorporated prior spatial information," IEEE Trans. Microw. Theory Techn., Vol. 61, 2129-2136, 2013.
doi:10.1109/TMTT.2013.2247413        Google Scholar

18. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of non-measurable equivalent currents for the imaging of dielectric objects," Inverse Probl., Vol. 25, 2009.        Google Scholar

19. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, 812-822, 2002.
doi:10.1109/TBME.2002.800759        Google Scholar

20. Li, X., S. K. Davis, S. C. Hagness, D. W. Van der Weide, and B. D. Van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microw. Theory Techn., Vol. 52, 1856-1865, 2004.
doi:10.1109/TMTT.2004.832686        Google Scholar

21. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microw. Compon. Lett., Vol. 11, 130-132, 2001.        Google Scholar

22. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas Propag., Vol. 51, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446        Google Scholar

23. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Trans. Microw. Theory Techn., Vol. 51, 887-892, 2003.
doi:10.1109/TMTT.2003.808630        Google Scholar

24. Abbosh, A. M., B. Mohammed, and K. S. Bialkowski, "Differential microwave imaging of the breast pair," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1434-1437, 2016.
doi:10.1109/LAWP.2015.2512260        Google Scholar

25. Fear, E. C. and M. A. Stuchly, "Microwave detection of breast tumors: Comparison of skin subtraction algorithms," J. Subsurface Sensing Technologies and Applications, Vol. 4129, 207-217, 2000.
doi:10.1117/12.390618        Google Scholar

26. Maklad, B. and E. C. Fear, "Reduction of skin reflections in radar-based microwave breast imaging," Conf. Proc. IEEE Eng. Med. Biol. Soc., Vol. 1-8, 21-24, 2008.        Google Scholar

27. Fear, E. C., J. Bourqui, C. Curtis, D. Mew, B. Docktor, and C. Romano, "Microwave breast imaging with a monostatic radar-based system: A study of application to patients," IEEE Trans. Microw. Theory Techn., Vol. 61, 2119-2128, 2013.
doi:10.1109/TMTT.2013.2255884        Google Scholar

28. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Q. Fang, C. A. Kogel, et al. "Initial clinical experience with microwave breast imaging in women with normal mammography," Acad. Radiol., Vol. 14, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016        Google Scholar

29. Poplack, S. P., T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, et al. "Electromagnetic breast imaging: Results of a pilot study in women with abnormal mammograms," Radiology, Vol. 243, 350-359, 2007.
doi:10.1148/radiol.2432060286        Google Scholar

30. Shea, J. D., P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Contrast-enhanced microwave imaging of breast tumors: A computational study using 3D realistic numerical phantoms," Inverse Probl., Vol. 26, 2010.        Google Scholar

31. Henriksson, T., M. Klemm, D. Gibbins, J. Leendertz, T. Horseman, A. W. Preece, et al. "Clinical trials of a multistatic UWB radar for breast imaging," Loughborough Antennas and Propagation Conference, 2011.        Google Scholar

32. Bourqui, J., J. M. Sill, and E. C. Fear, "A prototype system for measuring microwave frequency reflections from the breast," Int. J. Biomed. Imaging, Vol. 2012, article ID 851234, 2012.        Google Scholar

33. Wang, Y., Seismic Inverse Q Filtering, Blackwell Publishing Ltd, 2008.

34. Margrave, G. F., M. P. Lamoureux, and D. C. Henley, "Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data," Geophysics, Vol. 76, W15-W30, 2011.
doi:10.1190/1.3560167        Google Scholar

35. Margrave, G. F., L. Dong, P. Gibson, J. Grossman, D. C. Henley, and M. P. Lamoureux, "Gabor deconvolution: Extending Wiener's method to non-stationarity," CSEG Recorder, Vol. 28, No. 10, 5-12, 2003.        Google Scholar

36. Perz, M., L. Mewhort, G. F. Margrave, and L. Ross, "Gabor deconvolution: Real and synthetic data experiences," CSEG National Convention, Calgary, AB, Canada, 2005.        Google Scholar

37. Ferguson, R. J. and G. F. Margrave, "Attenuation compensation for georadar data by Gabor deconvolution," CREWES Res. Report, Vol. 24, No. 18, 2012.        Google Scholar

38. Robinson, E. A., "Predictive decomposition of time series with application to seismic exploration," Geophysics, Vol. 32, 418-484, 1967.
doi:10.1190/1.1439873        Google Scholar

39. Robinson, E. A. and S. Treitel, "Principles of digital Wiener filtering*," Geophys. Prospect., Vol. 15, 311-332, 1967.
doi:10.1111/j.1365-2478.1967.tb01793.x        Google Scholar

40. Kjartansson, E., "Constant Q-wave propagation and attenuation," J. Geophys. Res., Vol. 84, 4737-4748, 1979.
doi:10.1029/JB084iB09p04737        Google Scholar

41. Turner, G. and A. F. Siggins, "Constant Q-attenuation of subsurface radar pulses," Geophysics, Vol. 59, 1192-1200, 1994.
doi:10.1190/1.1443677        Google Scholar

42. Bano, M., "Constant dielectric losses of ground-penetrating radar waves," Geophys. J. Int., Vol. 124, 279-288, 1996.
doi:10.1111/j.1365-246X.1996.tb06370.x        Google Scholar

43. Irving, J. D. and R. J. Knight, "Removal of wavelet dispersion from ground-penetrating radar data," Geophysics, Vol. 68, 960-970, 2003.
doi:10.1190/1.1581068        Google Scholar

44. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues. 3. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003        Google Scholar

45. Sheriff, R. E., Encyclopedic Dictionary of Exploration Geophysics, Society of Exploration Geophysics, 1984.

46. Aki, K. and P. G. Richards, Quantitative Seismology, University Science Books, 2002.

47. Von Hippel, A. R., Dielectrics and Waves, John Wiley & Sons Inc, 1959.

48. Stacey, F. D., M. T. Gladwin, B. McKavanagh, A. T. Linde, and L. M. Hastie, "Anelastic damping of acoustic and seismic pulses," Geophys. Surv., Vol. 2, 133-151, 1975.
doi:10.1007/BF01447906        Google Scholar

49. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2000.

50. Pozar, D. M., Microwave Engineering, John Wiley & Sons Inc, 2005.

51. Margrave, G. F., "Theory of nonstationary linear filtering in the Fourier domain with application to time-variant filtering," Geophysics, Vol. 63, 244-259, 1998.
doi:10.1190/1.1444318        Google Scholar

52. Yilmaz, O., Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data, Society of Exploration Geophysicists, 2001.
doi:10.1190/1.9781560801580

53. Bode, H. W., Network Analysis and Feedback Amplifier Design, Van Nostrand Company, Inc, 1945.

54. Claerbout, J. F., Fundamentals of Geophysical Data Processing, Blackwell ScientiFIc Publications, 1985.

55. Oppenheim, A. V. and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall Inc, 1989.

56. Margrave, G. F., D. C. Henley, M. P. Lamoureux, V. Iliescu, and J. P. Grossman, "A update on Gabor deconvolution," CREWES Res. Report, Vol. 14, No. 36, 2002.        Google Scholar

57. Wadsworth, G. P., E. A. Robinson, J. G. Bryan, and P. M. Hurley, "Detection of reflections on seismic records by linear operators," Geophysics, Vol. 18, 539-586, 1953.
doi:10.1190/1.1437911        Google Scholar

58. Smith, A. D. and R. J. Ferguson, "Minimum-phase signal calculation using the real cepstrum," CREWES Res. Report, Vol. 26, No. 72, 2014.        Google Scholar

59. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Trans. Antennas Propag., Vol. 58, 2318-2326, 2010.
doi:10.1109/TAP.2010.2048844        Google Scholar

60. Liu, K. Y., E. C. Fear, and M. E. Potter, "Antenna aperture localization for arrival time correction using first-break," Progress In Electromagnetics Research B, Vol. 62, 105-120, 2015.
doi:10.2528/PIERB14121908        Google Scholar