1. Federal Communications Commission (FCC) "First report and order in the matter of revision of Part 15 of the com-mission's rules regarding ultra-wideband transmission systems,", ET-Docket, 98-153, 2002. Google Scholar
2. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light, 3-5, Princeton University Press, Princeton, 1995.
doi:10.1002/mop.29479
3. Pereira Jonathan, P. P., P. Da Silva Jose, and G. O. De Adller, "Microstrip antennas design based in periodic and quasiperiodic PBG symmetries," Microwave and Optical Technology Letters, Vol. 57, No. 12, 2914-2917, 2015.
doi:10.1109/LMWC.2005.855373 Google Scholar
4. Leger, L., T. Monediere, and B. Jecko, "Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna," IEEE Microwave Wireless Communication Letter, Vol. 15, No. 9, 573-575, 2005. Google Scholar
5. Zeb, B. A., K. P. Esselle, and R. M. Hashmi, "Computational models for bandwidth enhancement of electromagnetic bandgap (EBG) resonator antennas and their limitations," IEEE International Conference on Computational Electromagnetics, 19-21, 2015.
doi:10.1109/APWC.2012.6324933 Google Scholar
6. Neumann, N., R. Trieb, W.-S. Benedix, and D. Plettemeier, "Active integrated photonic antenna array," Proceedings of the 2012 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, 648-651, 2012. Google Scholar
7. Panda, P. K. and D. Ghosh, "Mushroom-like EBG structures for reducing RCS of patch antenna arrays," International Conference on Microwave and Photonics, 2013.
doi:10.1109/TAP.2002.800699 Google Scholar
8. Cheype, C., C. Serier, and M. Thevenot, "An electromagnetic bandgap resonator antenn," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1285-1290, 2002.
doi:10.1109/TAP.2004.840531 Google Scholar
9. Weily, A. R., L. Horvath, and K. P. Esselle, "A planar resonator antenna based on a woodpile EBG material," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 216-223, 2005.
doi:10.1109/TAP.2014.2333052 Google Scholar
10. Liu, W., Z. N. Chen, and X. Qing, "60-GHz thin broadband high-gain LTCC metamaterial- mushroom antenna array," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 9, 4592-4601, 2014.
doi:10.1109/JSTQE.2005.845621 Google Scholar
11. Seassal, C., C. Monat, J. Mouette, et al. "InP bonded membrane photonics components and circuits: Toward 2.5 dimensional micro-nano-photonics," IEEE Journal of Selected Topics in Quantum Electronic, Vol. 11, No. 2, 395-407, 2005.
doi:10.1364/OPEX.13.003310 Google Scholar
12. Hattori, H. T., C. Seassal, X. Letartre, et al. "Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides," Optics Express, Vol. 13, No. 9, 3310-3322, 2005.
doi:10.1109/TMTT.2011.2176507 Google Scholar
13. Oliver, J. M., J.-M. Rollin, K. Vanhille, et al. "A W-band micromachined 3-D cavity-backed patch antenna array with integrated diode detector," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 2, 284-292, 2012. Google Scholar
14. Prather, D. W., S. Shi, A. Sharkawy, J. Murakowski, and G. J. Schneider, Photonic Crystals: Theory, Applications, and Fabrication, 562-590, Wiley, Hoboken, N.J., 2009.
doi:10.1007/978-88-470-0844-1
15. Sibilia, C., Photonic Crystals: Physics and Technology, 223-243, Springer, Milano, 2008.