1. Bolomey, J. C., "Recent european developments in active microwave imaging for industrial, scientific, and medical applications," IEEE T. Microw. Theory, No. 37, 2109-2117, Dec. 1989.
doi:10.1109/22.44129 Google Scholar
2. National Breast Cancer Coalition (NBCC), , URL: http://www.stopbreast- cancer.org, 2014.
3. Yujiri, L., "Passive millimeter wave imaging," IEEE MTT-S International Microwave symposium, Vol. 4, 98-101, Jun. 2006. Google Scholar
4. Salmon, N. A., "Polarimetric scene simulation in millimeter-wave radiometric imaging," Proc. SPIE, 260-269, Feb. 2004.
doi:10.1117/12.562206 Google Scholar
5. Iddan, G., G. Meron, A. Glukhovsky, and P. Swain, "Wireless capsule endoscopy," Nature, Vol. 405, 417-418, May 25, 2000. Google Scholar
6. Hu, C., L. Liu, and B. Sun, "Compact representation and panoramic representation for capsule endoscope images," Int. J. Inf. Acquisit., Vol. 6, 257-268, 2009.
doi:10.1142/S0219878909001989 Google Scholar
7. Li, B. and M. Q.-H. Meng, "Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection," IEEE Trans. on Information Technology in Biomedicine, Vol. 16, No. 3, 323-329, May 2012.
doi:10.1109/TITB.2012.2185807 Google Scholar
8. Li, B. and M. Q.-H. Meng, "Computer aided detection of bleeding regions in capsule endoscopy images," IEEE Trans. Biomed. Eng., Vol. 56, No. 4, 1032-1039, Apr. 2009.
doi:10.1109/TBME.2008.2010526 Google Scholar
9. Li, B. and M. Q.-H. Meng, "Texture analysis for ulcer detection in capsule endoscopy images," Image Vis. Comput., Vol. 27, No. 9, 1336-1342, Aug. 2009.
doi:10.1016/j.imavis.2008.12.003 Google Scholar
10. Li, B. and M. Q.-H. Meng, "Computer-based detection of bleeding and ulcer in wireless capsule endoscopy images by chromaticity moments," Comput. Bilo. Med., Vol. 39, No. 2, 141-147, Feb. 2009.
doi:10.1016/j.compbiomed.2008.11.007 Google Scholar
11. Hwang, S. and M. Emre Celebi, "Polyp detection in wireless capsule endoscopy videos based on image segmentation and geometric feature," Proc. 2010 IEEE Int. Conf. Acoust. Speech Signal Process., 678-681, Mar. 2010.
doi:10.1109/ICASSP.2010.5495103 Google Scholar
12. Wang, F. F. and Y. R. Zhang, "Through-wall imaging ultra-wideband radar: Numerical simulation," Chinese Journal of Radio Science, Vol. 25, No. 3, 569-573, Jun. 2010. Google Scholar
13. Fetterman, M. R., J. Dougherty, W. L. Kiser, and Jr., "Scene simulation of mm-wave images," IEEE 2007 AP-S Int. Symposium, 1493-1496, Dec. 2007. Google Scholar
14. Liu, G. D. and Y. R. Zhang, "Three-dimensional microwave-induced thermo-acoustic imaging for breast cancer detection," Acta Phys. Sin., Vol. 60, No. 074303, 1-7, Sep. 2010. Google Scholar
15. Zhang, H. M., Y. R. Zhang, and F. F. Wang, "Target shape reconstruction method for the throughwall radar based on SVM," Chin. J. Radio, Vol. 30, 153-159, Feb. 2015. Google Scholar
16. Wang, F. F. and Y. R. Zhang, "An electromagnetic inverse scattering approach based on support vector machine," Acta Phys. Sin., Vol. 61, No. 084101, 1-8, Jul. 2012. Google Scholar
17. Skjelvareid, M. H., T. Y. Birkelund, and Y. Larsen, "Synthetic aperture focusing of ultrasonic data from multilayered media using an omega-K algorithm," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 58, No. 5, 1037-1048, May 2011.
doi:10.1109/TUFFC.2011.1904 Google Scholar
18. Vapnik, V., The Nature of Statistical Learning Theory, Springer-Verlag, 1995.
doi:10.1007/978-1-4757-2440-0
19. Miteran, J., S. Bouillant, and E. Bourennane, "SVM approximation for real-time image segmentation by using an improved hyperrectangles-based method," Real-Time Imaging, Vol. 9, 179-188, 2003.
doi:10.1016/S1077-2014(03)00035-4 Google Scholar
20. Vapnik, V., Statistical Learning Theory, J. Wiley, 1998.
21. Steinwart, I., "On the optimal parameter choice for v-support vector machines," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 25, No. 10, 1274-1284, 2003.
doi:10.1109/TPAMI.2003.1233901 Google Scholar
22. Mangasarian, O. and D. Musicant, "Lagrangian support vector machines," Journal of Machine Learning Research, Vol. 1, 161-177, 2001. Google Scholar
23. Wang, L., Support Vector Machines: Theory and Applications, Springer-Verlag, 2005.
doi:10.1007/b95439
24. Jain, A. K. and D. Zongker, "Feature selection, evaluation, application, and small sample performance," IEEE Trans. PAMI, Vol. 19, No. 2, 153-158, Feb. 1997.
doi:10.1109/34.574797 Google Scholar
25. Dash, M. and H. Liu, "Feature selection for classification," Intell. Data Anal., Vol. 1, 131-156, 1997.
doi:10.1016/S1088-467X(97)00008-5 Google Scholar
26. Guyon, I., J. Westion, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., Vol. 46, 389-422, 2002.
doi:10.1023/A:1012487302797 Google Scholar
27. Zhang, H. M., Y. R. Zhang, and F. F. Wang, "Target-recognition method for support vector machine on near-field radar imaging," Journal of Nanjing University of Posts and Telecommunications (Natural Science), Vol. 34, No. 5, 41-46, Oct. 2014. Google Scholar
28. Gurel, L. and U. Oguz, "Three-dimensional FDTD modeling of a ground-penetrating radar," IEEE Trans. Geosci. Remote Sens., Vol. 38, 1513-1520, Apr. 2008. Google Scholar
29. Wu, S. Y., Y. Y. Xu, and J. Chen, "Through-wall shape estimation based on UWB-SP radar," IEEE Geosci. Remote Sens. Letters, Vol. 10, 1234-1238, May 2013.
doi:10.1109/LGRS.2012.2237012 Google Scholar
30. Dehmollaian, M., "Through-wall shape reconstruction and wall parameters estimation using differential evolution," IEEE Geosci. Remote Sens. Letters, Vol. 8, 201-205, Feb. 2011.
doi:10.1109/LGRS.2010.2056912 Google Scholar
31. Chapelle, O., P. Haffner, and V. N. Vapnik, "Support vector machines for histogram-based image classification," IEEE Transactions on Neural Networks, Vol. 10, No. 5, 1055-1064, May 1999.
doi:10.1109/72.788646 Google Scholar
32. Cheng, Z., W. Ji, and L. Hao, "Imaging algorithm for synthetic aperture interferometric radiometer in near field," Science China Technological Sciences, Vol. 54, 2224-2231, Aug. 2011.
doi:10.1007/s11431-011-4323-2 Google Scholar
33. Sun, J. G., "F-K demigration in media with constant velocity: Basic concepts, formulas, and applications in inhomogeneous media," Journal of Jilin University (Earth Science Edition), Vol. 38, No. 1, 135-143, Jan. 2008. Google Scholar
34. Xiu, Z. J., J. Chen, G. Y. Fang, and F. Li, "Ground penetrating radar imaging based on F-K migration and minimum entropy method," Journal of Electronics and Information Technology, Vol. 29, No. 4, 827-830, Apr. 2007. Google Scholar
35. Xu, X. Y., E. L. Miller, and C. M. Rappaport, "Minimum entropy regularization in frequencywavenumber migration to localize subsurface objects," IEEE Transactions on Geosciences and Remote Sensing, Vol. 41, No. 8, 1804-1812, Aug. 2003.
doi:10.1109/TGRS.2003.813497 Google Scholar