Vol. 77
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-07-17
A Robust Sub-Integer Range Alignment Algorithm Against MTRC for ISAR Imaging
By
Progress In Electromagnetics Research B, Vol. 77, 21-35, 2017
Abstract
Range alignment plays an important role in the inverse synthetic aperture radar (ISAR) imaging. The performance of the traditional range alignment algorithms decreases when the migration through resolution cells (MTRC) is much severe. In this paper, a measure of MTRC is defined, and the effect of MTRC on range alignment is analyzed. Taking MTRC into account, a robust sub-integer range alignment algorithm is proposed. Firstly, each range profile is interpolated to remove the precision limitation of integer range resolution cell. Subsequently, the matrix formed by all the range profiles is partitioned into several matrix blocks on the slow-time domain. For each matrix block, the range profiles are aligned by minimizing the entropy of the average range profile (ARP). Finally, the matrix blocks are coarsely aligned using the maximum correlation method, followed by a fine alignment based on the minimization of the ISAR image entropy. The effectiveness of the proposed algorithm is validated by simulations and real-world data. Results demonstrate that the proposed method is robust against MTRC and can reduce the alignment error. The resultant ISAR image is much better focused.
Citation
Pengjiang Hu, Shiyou Xu, and Zengping Chen, "A Robust Sub-Integer Range Alignment Algorithm Against MTRC for ISAR Imaging," Progress In Electromagnetics Research B, Vol. 77, 21-35, 2017.
doi:10.2528/PIERB17050904
References

1. Chen, C. C. and H. C. Andrews, "Target-motion-induced radar imaging," IEEE Trans. Aerosp. Electron. Syst., Vol. 16, No. 1, 2-14, 1980.
doi:10.1109/TAES.1980.308873

2. Martorella, M., E. Giusti, A. Capria, et al. "Automatic target recognition by means of polarimetric ISAR images and neural networks," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 11, 3786-3794, 2009.
doi:10.1109/TGRS.2009.2025371

3. Musman, S., D. Kerr, and C. Bachmann, "Automatic recognition of ISAR images," IEEE Trans. Aerosp. Electron. Syst., Vol. 35, No. 4, 1240-1252, 1999.
doi:10.1109/7.805442

4. Yan, X., J. Hu, G. Zhao, J. Zhang, and J. Wan, "A new parameter estimation method for GTD model based on modified compressed sensing," Progress In Electromagnetics Research, Vol. 141, 553-575, 2013.
doi:10.2528/PIER13052017

5. Park, J.-I. and K.-T. Kim, "A comparative study on ISAR imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.
doi:10.2528/PIER10071901

6. Munoz-Ferreras, J. M. and F. Perez-Martinez, "Subinteger range-bin alignment method for ISAR imaging of noncooperative targets," EURASIP J. Adv. Signal Process., Vol. 2010, 1-16, 2010.

7. Yuan, B., S. Y. Xu, and Z. P. Chen, "Translational motion compensation techniques in ISAR imaging for target with micro-motion parts," Progress In Electromagnetics Research M, Vol. 35, 113-120, 2014.
doi:10.2528/PIERM14011503

8. Zhu, D. Y., L. Wang, Y. S. Yu, et al. "Robust ISAR range alignment via minimizing the entropy of the average range profile," IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 2, 204-208, 2009.
doi:10.1109/LGRS.2008.2010562

9. Wang, G. Y. and Z. Bao, "A new algorithm of range alignment in ISAR motion compensation," Acta Electronica Sinica, Vol. 26, No. 6, 5-8, 1998.

10. Wang, J. F. and D. Kasilingam, "Global range alignment for ISAR," IEEE Trans. Aerosp. Electron. Syst., Vol. 39, No. 1, 351-357, 2003.
doi:10.1109/TAES.2003.1188917

11. Steinberg, B. D., "Microwave imaging of aircraft," Proceedings of the IEEE, Vol. 16, No. 12, 1578-1592, 1988.
doi:10.1109/5.16351

12. Ye, C. M., J. Xu, Y. N. Peng, et al. "Performance analysis of Doppler centroid tracking for ISAR autofocusing," Acta Electronica Sinica, Vol. 37, No. 6, 1324-1328, 2009.

13. Jackowatz, C., D. Wahl, P. Eichel, et al. Spotlight-mode Synthetic Aperture Radar: A Signal Processing Approach, Kluwer Academic Publishers, 1996.
doi:10.1007/978-1-4613-1333-5

14. Zhang, L., J. L. Sheng, J. Duan, et al. "Translational motion compensation for ISAR imaging under low SNR by minimum entropy," EURASIP J. Adv. Signal Process., Vol. 2013, 1-19, 2013.

15. Li, X., G. S. Liu, and J. L. Ni, "Autofocusing of ISAR images based on entropy minimization," IEEE Trans. Aerosp. Electron. Syst., Vol. 35, No. 4, 1240-1252, 1999.
doi:10.1109/7.805442

16. Qiu, X. H., A. H. W. Cheng, and Y. S. Yam, "Fast minimum entropy phase compensation for ISAR imaging," Journal of Electronics and Information Technology, Vol. 26, No. 10, 1656-1660, 2004.

17. Xu, G., M. D. Xing, L. Yang, et al. "Joint approach of translational and rotational phase error corrections for high-resolution inverse synthetic aperture radar imaging using minimum-entropy," IET Radar Sonar Navig., Vol. 10, No. 3, 586-594, 2016.
doi:10.1049/iet-rsn.2015.0356

18. Martorella, M., J. Palmer, F. Berizzi, et al. "Polarimetric ISAR autofocusing," IETSignal Process., Vol. 2, No. 3, 312-324, 2008.

19. Zhang, S. H., Y. X. Liu, and X. Li, "Fast entropy minimization based autofocusing technique for ISAR imaging," IEEE Trans. Signal Process., Vol. 63, No. 13, 3425-3434, 2015.
doi:10.1109/TSP.2015.2422686

20. Martorella, M., F. Berizzi, and B. Haywood, "Contrast maximisation based technique for 2-D ISAR autofocusing," IEE Proceedings: Radar Sonar Navig., Vol. 152, No. 4, 253-262, 2005.
doi:10.1049/ip-rsn:20045123

21. Xing, M. D., R. B. Wu, and Z. Bao, "High resolution ISAR imaging of high speed moving targets," IEE Proceedings: Radar Sonar Navig., Vol. 152, No. 2, 58-67, 2005.
doi:10.1049/ip-rsn:20045084

22. Ozdemir, C., Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms, John Wiley and Sons, Inc., 2012.
doi:10.1002/9781118178072