1. Caloz, C. and T. Itoh, Electromagnetic: Transmission Line Theory and Microwave Applications, John Wiley & Sons, Inc., 2006.
2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
3. Veselago, V. G., "The Electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekh Usp. Fiz. Nauk, Vol. 92, 509-514, 1964. Google Scholar
4. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2081, 1999.
doi:10.1109/22.798002 Google Scholar
5. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low-frequency plasmons in thin wire structures," J. Physics, Condensed Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007 Google Scholar
6. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2011.
doi:10.1126/science.1058847 Google Scholar
7. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microwave and Optical Technology Lett., Vol. 58, 71-75, 2016.
doi:10.1002/mop.29494 Google Scholar
8. Bilotti, F., S. Tricarico, and L. Vegni, "Plasmonic metamaterial cloaking at optical frequencies," IEEE Transactions on Nanotechnology, Vol. 9, 55-61, 2010.
doi:10.1109/TNANO.2009.2025945 Google Scholar
9. Fouad, M. A. and M. A. Abdalla, "New π-T generalised metamaterial negative refractive index transmission line for a compact coplanar waveguide triple band pass filter applications," IET Microw. Antennas Propag., Vol. 8, 1097-1104, 2014.
doi:10.1049/iet-map.2013.0698 Google Scholar
10. Li, H., L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers," J. Appl. Phys., Vol. 110, 014909, 2011.
doi:10.1063/1.3608246 Google Scholar
11. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
12. Lin, B.-Q., S.-H. Zhao, X.-Y. Da, Y.-W. Fang, J.-J. Ma, W. Li, and Z. H. Zhu, "Design of an ultracompact metamaterial absorber," Microwave and Optical Technology Lett., Vol. 57, 1439-1441, 2015.
doi:10.1002/mop.29099 Google Scholar
13. Thummaluru, S. R., N. Mishra, and R. K. Chaudhary, "Design and analysis of an ultra-thin X-band polarization — insensitive metamaterial absorber," Microwave Optical Technology Lett., Vol. 58, 2481-2485, 2016.
doi:10.1002/mop.30071 Google Scholar
14. Zhai, H., Z. Li, L. Li, and C. Liang, "A dual-band wide-angle polarization-insensitive ultrathin gigahertz metamaterial absorber," Microwave and Optical Technology Lett., Vol. 55, 1606-1609, 2013.
doi:10.1002/mop.27622 Google Scholar
15. Ding, F., Y. Cui, X. Ge, Y. Jin, and S. He, "Ultra-broadband microwave metamaterial absorber," Applied Physics Letters, Vol. 100, 103506, 2012.
doi:10.1063/1.3692178 Google Scholar
16. Bian, B., S. Liu, S. Wang, X. K. Kong, H. Zhang, B. Ma, and H. Yang, "Novel tripleband polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber," Journal of Applied Physics, Vol. 114, 194511, 2013.
doi:10.1063/1.4832785 Google Scholar
17. Huang, X., H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, "Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber," Journal of Applied Physics, Vol. 113, 213516, 2013.
doi:10.1063/1.4809655 Google Scholar
18. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physics Review E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617 Google Scholar