1. Naito, Y. and K. Suetake, "Application of ferrite to electromagnetic wave absorber and its characteristics," IEEE Trans. Microwave Theory and Technique, Vol. 19, 65-72, 1971.
doi:10.1109/TMTT.1971.1127446 Google Scholar
2. Lim, K. M., K. A. Lee, M. C. Kim, and C. G. Park, "Complex permeability and electromagnetic wave absorption properties of amorphous alloy-epoxy composites," J. Non-Crystalline Solids Soc., Vol. 351, 75-83, 2005.
doi:10.1016/j.jnoncrysol.2004.09.025 Google Scholar
3. Sakai, K., Y. Wada, and S. Yoshikado, "Composite electromagnetic wave absorber made of permalloy or sendust and effect of sendust particle size on absorption characteristics," PIERS Online, Vol. 4, 846-853, 2008.
doi:10.2529/PIERS071220021215 Google Scholar
4. Wada, Y., N. Asano, K. Sakai, and S. Yoshikado, "Preparation and evaluation of composite electromagnetic wave absorbers made of fine aluminum particles dispersed in polystyrene resin by controlling permeability," PIERS Online, Vol. 4, 838-845, 2008.
doi:10.2529/PIERS071220014249 Google Scholar
5. Sakai, K. and S. Yoshikado, "Effect of particle shape on absorption characteristics of composite electromagnetic wave absorber made of sendust particles dispersed in polystyrene resin," ICC3 IOP Conf. Ser.: Mater. Sci. Eng., Vol. 18, 092019, 2011.
doi:10.1088/1757-899X/18/9/092019 Google Scholar
6. Yoshida, T., Y. Agari, and S. Yoshikado, "Evaluation of absorbing characteristics and thermal contact resistance of electromagnetic wave absorbing composite rubber," IEEJ Trans. FM, Vol. 132, 180-186, 2012 (in Japanese).
doi:10.1541/ieejfms.132.180 Google Scholar
7. Amano, M. and Y. Kotsuka, "A novel microwave absorber with surface-printed conductive line patterns," IEEE MTT-S Digest, 1193-1196, 2002. Google Scholar
8. Yoshida, T., M. Matsushita, T. Kubota, and S. Yoshikado, "Fabrication and evaluation of electromagnetic wave absorbers using frequency selective surface," Progress In Electromagnetic Research Symposium (PIERS), 1138-1144, IEEE Conference Publications, Shanghai, China, Aug. 8–11, 2016. Google Scholar
9. Rafael, P. and P. M. David, "A frequency-selective surface using aperture-coupled microstrip patches," IEEE Trans. Antenna and Propagation, Vol. 39, 1763-1769, 1991.
doi:10.1109/8.121598 Google Scholar
10. Nakajima, M., The Microwave Engineering, 36-37, Morikita Publishing Co., Ltd, 1975 (in Japanese).
11. Collin, R. E., Foundation for Microwave Engineering, McGraw-Hill, Inc., 1966.
12. Das, A., Lectures on Electromagnetism, 2nd Ed., World Scientific, 2013.
doi:10.1142/8805
13. Christopoulos, C., The Transmission-Line Modeling Method: TLM, Wiley-IEEE Press, 1995.
doi:10.1109/9780470546659
14. Zhou, Y. J., X. Y. Zhou, T. J. Cui, R. Qiang, and J. Chen, "Efficient simulations of periodic structures with oblique incidence using direct spectral FDTD method," Progress In Electromagnetic Research M, Vol. 17, 101-111, 2011.
doi:10.2528/PIERM11012501 Google Scholar
15. Belkhir, A. and F. I. Baida, "Three-dimensional finite-difference time-domain algorithm for oblique incidence with adaptation of perfectly matched layers and nonuniform meshing: Application to the study of a radar dome," Phys. Rev. E, Vol. 77, 056701-1-056701-10, 2008.
doi:10.1103/PhysRevE.77.056701 Google Scholar
16. Johar, F. M., S. N. Salleh, F. A. Azmin, B. H. Ahmad, and M. Md. Shukor, "A review of method in FDTD for the analysis of oblique incident plane wave on periodic structures," International Journal of Engineering and Technlogy (IJET), Vol. 5, 3900-3906, 2011. Google Scholar