Vol. 78
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-09-14
Stomach Tumor Localization Method of a Support Vector Machine Based on Capsule Endoscopy
By
Progress In Electromagnetics Research B, Vol. 78, 125-142, 2017
Abstract
This study proposes a real-time method to solve the electromagnetic inverse scattering problem. This technique converts this problem into a regression problem using a support vector machine (SVM). The SVM-based solution successfully deals with the nonlinearity and ill-posedness inherent in thisproblem. Simulation results show the feasibility and effectiveness of the proposed method. The method can effectively locate the tumor target of the stomach regardless of the presence of noise. The positioning effect of the method improves as SNR increases. When the SNR is higher than 50 dB, noise minimally affects the results. Finally, the SVM prediction model is utilized to study the effect of the number of sampling locations on the prediction results. The results show that the more sampling locations, the better the prediction results.
Citation
Gong Chen, Ye-Rong Zhang, and Bi-Yun Chen, "Stomach Tumor Localization Method of a Support Vector Machine Based on Capsule Endoscopy," Progress In Electromagnetics Research B, Vol. 78, 125-142, 2017.
doi:10.2528/PIERB17062607
References

1. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089        Google Scholar

2. Craddock, I. J., M. Donelli, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2012.        Google Scholar

3. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of non-measurable equivalent currents for the imaging of dielectric objects," Inverse Problems, Vol. 25, No. 5, 2009.
doi:10.1088/0266-5611/25/5/055004        Google Scholar

4. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 12, 3527-3539, Dec. 2006.
doi:10.1109/TGRS.2006.881753        Google Scholar

5. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 12, 3527-3539, 2006.
doi:10.1109/TGRS.2006.881753        Google Scholar

6. Bolomey, J. C., "Recent european developments in active microwave imaging for industrial, scientific, and medical applications," IEEE T. Microw. Theory, No. 37, 2109-2117, Dec. 1989.
doi:10.1109/22.44129        Google Scholar

7. Ram, S. S., Y. Li, A. Lin, and H. Ling, "Doppler-based detection and stacking of humans in indoor environments," Journal of the Franklin Institute --- Engineering and Applied Mathematics, Vol. 345, No. 6, 679-699, 2008.
doi:10.1016/j.jfranklin.2008.04.001        Google Scholar

8. Le, C., T. Dogaru, L. Nguyen, and M. A. Ressler, "Ultrawideband (UWB) radar imaging of building interior: Measurements and predictions," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1409-1420, 2009.
doi:10.1109/TGRS.2009.2016653        Google Scholar

9. National Breast Cancer Coalition (NBCC), URL: http://www.stopbreast- cancer.org, 2014.        Google Scholar

10. Iddan, G., G. Meron, and A. Glukhovsky, "Wireless capsule endoscopy," Nature, Vol. 405, 417-417, May 2000.
doi:10.1038/35013140        Google Scholar

11. Yujiri, L., "Passive millimeter wave imaging," IEEE MTT-S International Microwave Symposium, Vol. 4, 98-101, Jun. 2006.        Google Scholar

12. Hu, C., L. Liu, and B. Sun, "Compact representation and panoramic representation for capsule endoscope images," Int. J. Inf. Acquisit., Vol. 6, 257-268, 2009.
doi:10.1142/S0219878909001989        Google Scholar

13. Hwang, S. and M. Emre Celebi, "Polyp detection in wireless capsule endoscopy videos based on image segmentation and geometric feature," Proc. 2010 IEEE Int. Conf. Acoust. Speech Signal Process., 678-681, Mar. 2010.
doi:10.1109/ICASSP.2010.5495103        Google Scholar

14. Atasoy, S., B. Glocker, S. Giannarou, D. Mateus, A.Meining, G. Yang, and N. Navab, "Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy," Proc. MICCAI, 499-506, 2009.        Google Scholar

15. Hwang, S., J. Oh, J. Cox, S. J. Tang, and H. F. Tibbals, "Blood detection in wireless capsule endoscopy using expectation maximization clustering," Proc. SPIE, Vol. 6144, 2006.        Google Scholar

16. Tjoa, P. M. and M. S. Krishnan, "Feature extraction for the analysis of colon status from the endoscopic images," Biomed. Eng. Online, Vol. 2, 2003.        Google Scholar

17. Igual, L., S. Segul, J. Vitria, F. Azpiroz, and P. Radeva, "Eigenmotion-based detection of intestinal contractions," Proc. CAIP, Springer LNCS, Vol. 4673, 293-300, 2007.        Google Scholar

18. Gono, K., "Multifunctional endoscopic imaging system for support of early cancer diagnosis," IEEE J. Sel. Topics Quant. Electron, Vol. 14, No. 1, 62-69, Jan. 2008.
doi:10.1109/JSTQE.2007.913966        Google Scholar

19. Gono, K., T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, "Appearance of endhanced tissue features in narrow band endoscopic imaging," J. Biomed. Opt., Vol. 9, 568-577, May 2004.
doi:10.1117/1.1695563        Google Scholar

20. Gono, K., K. Yamazaki, N. Doguchi, T. Nonami, T. Obi, M. Yamagichi, N. Ohyama, H. Machida, Y. Saono, S. Yoshida, Y. Hamamoto, and T. Endo, "Endoscopic observation of tissue by narrow band illumination," Opt. Rev., Vol. 10, 211-215, 2003.
doi:10.1007/s10043-003-0211-8        Google Scholar

21. Li, B. and M. Q.-H. Meng, "Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection," IEEE Trans. on Information Technology in Biomedicine, Vol. 16, No. 3, 323-329, May 2012.
doi:10.1109/TITB.2012.2185807        Google Scholar

22. Li, B. and M. Q.-H. Meng, "Computer aided detection of bleeding regions in capsule endoscopy images," IEEE Trans. Biomed. Eng., Vol. 56, No. 4, 1032-1039, Apr. 2009.
doi:10.1109/TBME.2008.2010526        Google Scholar

23. Li, B. and M. Q.-H. Meng, "Texture analysis for ulcer detection in capsule endoscopy images," Image Vis. Comput., Vol. 27, No. 9, 1336-1342, Aug. 2009.
doi:10.1016/j.imavis.2008.12.003        Google Scholar

24. Li, B. and M. Q.-H. Meng, "Computer-based detection of bleeding and ulcer in wireless capsule endoscopy images by chromaticity moments," Comput. Bilo. Med., Vol. 39, No. 2, 141-147, Feb. 2009.
doi:10.1016/j.compbiomed.2008.11.007        Google Scholar

25. Kanaan, M. and M. Suveren, "In-body ranging for ultra-wide band wireless capsule endoscopy using a neural network architecture," 10th International Symposium on Medical Information and Communication Technology (ISMICT), 1-5, Worcester, USA, Mar. 20-23, 2016.        Google Scholar

26. Kanaan, M. and M. Suveren, "Ranging for in-body localization of ultra wide band wireless endoscopy capsules using neural networks," 24th Signal Processing and Communication Application Conference, (SIU-2016), Zonguldak, Turkey, May 16-19, 2016.        Google Scholar

27. Kanaan, M. and M. Suveren, "In-body ranging with ultra-wideband signals: Techniques and modeling of the ranging error," Wireless Communications and Mobile Computing, Vol. 2017, 1-15, 2017.
doi:10.1155/2017/4313748        Google Scholar

28. Kanaan, M. and M. Suveren, "A novel frequency-dependent path loss model for ultra wideband implant body area networks," Measurement, Vol. 68, 117-127, 2015.
doi:10.1016/j.measurement.2015.02.040        Google Scholar

29. Massa, A., A. Boni, and M. Donelli, "A classification approach based on SVM for electromagnetic sub-surface sensing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 9, 2084-2093, Sep. 2005.
doi:10.1109/TGRS.2005.853186        Google Scholar

30. Donelli, M., F. Viani, P. Rocca, and A. Massa, "An innovative multi-resolution approach for DoA estimation based on a support vector classification," IEEE Trans. Antennas Propag., Vol. 57, No. 8, 2279-2292, Aug. 2009.
doi:10.1109/TAP.2009.2024485        Google Scholar

31. Wang, L., Support Vector Machines: Theory and Applications, Springer-Verlag, 2005.
doi:10.1007/b95439

32. Jain, A. K. and D. Zongker, "Feature selection, evaluation, application, and small sample performance," IEEE Trans. PAMI, Vol. 19, No. 2, 153-158, Feb. 1997.
doi:10.1109/34.574797        Google Scholar

33. Dash, M. and H. Liu, "Feature selection for classification," Intell. Data Anal., Vol. 1, 131-156, 1997.
doi:10.1016/S1088-467X(97)00008-5        Google Scholar

34. Guyon, I., J. Westion, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., Vol. 46, 389-422, 2002.
doi:10.1023/A:1012487302797        Google Scholar

35. Lei, W., C. Huang, and Y. Su, "A real-time BP imaging algorithm in SPR application," IEEE International Geoscience and Remote Sensing Symposium, 1734-1737, 2005.        Google Scholar

36. Ahmad, F., M. Amin, and S. Kassam, "A beamforming approach to stepped-frequency synthetic aperture through-the-wall radar imaging," IEEE International Workshop on Computational Advances in Multi-sensor Adaptive Processing, 24-27, 2005.
doi:10.1109/CAMAP.2005.1574174        Google Scholar

37. Salucci, M., N. Anselmi, G. Oliveri, P. Calmon, R. Miorelli, C. Reboud, and A. Massa, "Real-time NDT-NDE through an innovative adaptive partial least squares SVR inversion approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 11, 6818-6832, Nov. 2016.
doi:10.1109/TGRS.2016.2591439        Google Scholar

38. Sullivan, D. M., "Electromagnetic simulation using the FDTD method," IEEE Mircowave Theory and Techniques Society, 2000.        Google Scholar

39. Chamma, W. A., "FDTD modeling of a realistic room for through-the-wall radar applications," International Journal of Numerical Modelling: Electronic Networks Devices and Fields, Vol. 22, No. 2, 159-174, 2009.
doi:10.1002/jnm.703        Google Scholar

40. Vapnik, V. N., Estimation of Dependencies Based on Empirical Data, Springer-Verlag, 1982.

41. Vapnik, V. N., The Nature of Statistical Learning Theory, Springer-Verlag, 1995.
doi:10.1007/978-1-4757-2440-0

42. Vapnik, V. N., S. E. Golowich, and A. Smith, "Support vector method for function approximation, regression estimation and signal processing," Advances in Neural Information Processing Systems, Vol. 9, 281-287, 1997.        Google Scholar

43. Cristianini, N. and J. S. Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2000.
doi:10.1017/CBO9780511801389

44. Smola, A. J., B. Scholkopf, and K. R. Muller, "The connection between regularization operators and support vector kernels," Neural Networks, Vol. 11, No. 4, 637-649, 1998.
doi:10.1016/S0893-6080(98)00032-X        Google Scholar

45. Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernels evaluation of SVM-based estimators for inverse scattering problems," Progress In Electromagnetics Research, Vol. 49, 372-375, 2007.        Google Scholar

46. Suykens, J. A. and J. Vandewalle, "Recurrent least squares support vector machines," IEEE Transactions on Circuits Systems, Vol. 47, No. 7, 1109-1114, 2000.
doi:10.1109/81.855471        Google Scholar

47. Xie, Y., B. Guo, and L. Xu, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 53, No. 8, 1647-1657, 2006.
doi:10.1109/TBME.2006.878058        Google Scholar