Vol. 71
Latest Volume
All Volumes
PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-10-06
Electromagnetic Scattering from a Zero-Thickness PEC Disk: a Note on the Helmholtz-Galerkin Analytically Regularizing Procedure
By
Progress In Electromagnetics Research Letters, Vol. 71, 7-13, 2017
Abstract
Recently, a new analytically regularizing procedure, based on Helmholtz decomposition and Galerkin method, has been proposed to analyze the electromagnetic scattering from a zero-thickness perfectly electrically conducting disk. The convergence of the discretization scheme is guaranteed and of exponential type, i.e., few expansion functions are needed to achieve highly accurate solutions. However, it leads to the numerical evaluation of improper integrals of asymptotically oscillating and slowly decaying functions. Asymptotic acceleration techniques allow to obtain faster decaying integrands without overcoming the problem of the oscillating nature of the integrands themselves, i.e., the convergence of the integrals becomes slower and slower as the accuracy required for the solution is higher. In this paper, by means of algebraic manipulations and a suitable integration procedure in the complex plane, an alternative expression for the scattering matrix coefficients involving only fast converging proper integrals is devised. As shown in the numerical results section, the proposed technique is very effective and drastically outperforms the classical analytical asymptotic acceleration technique.
Citation
Mario Lucido, Francesca Di Murro, and Gaetano Panariello, "Electromagnetic Scattering from a Zero-Thickness PEC Disk: a Note on the Helmholtz-Galerkin Analytically Regularizing Procedure," Progress In Electromagnetics Research Letters, Vol. 71, 7-13, 2017.
doi:10.2528/PIERL17072006
References

1. Dudley, D. G., "Error minimization and convergence in numerical methods," Electromagnetics, No. 5, 89-97, 1985.
doi:10.1080/02726348508908142

2. Nosich, A. I., "Method of analytical regularization in computational photonics," Radio Science, Vol. 8, 1421-1430, 2016.
doi:10.1002/2016RS006044

3. Hongo, K. and H. Serizawa, "Diffraction of electromagnetic plane wave by rectangular plate and rectangular hole in the conducting plate," IEEE Trans. Antennas Propag., Vol. 47, No. 6, 1029-1041, 1999.
doi:10.1109/8.777128

4. Bliznyuk, N. Y., A. I. Nosich, and A. N. Khizhnyak, "Accurate computation of a circular-disk printed antenna axisymmetrically excited by an electric dipole," Microwave and Optical Technology Letters, Vol. 25, No. 3, 211-216, 2000.
doi:10.1002/(SICI)1098-2760(20000505)25:3<211::AID-MOP15>3.0.CO;2-D

5. Tsalamengas, J. L., "Rapidly converging direct singular integral-equation techniques in the analysis of open microstrip lines on layered substrates," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 3, 555-559, 2001.
doi:10.1109/22.910563

6. Losada, V., R. R. Boix, and F. Medina, "Fast and accurate algorithm for the short-pulse electromagnetic scattering from conducting circular plates buried inside a lossy dispersive half-space," IEEE Trans. Geosci. Remote Sensing, Vol. 41, 988-997, 2003.
doi:10.1109/TGRS.2003.810678

7. Lucido, M., G. Panariello, and F. Schettino, "Accurate and efficient analysis of stripline structures," Microwave and Optical Technology Letters, Vol. 43, 14-21, 2004.
doi:10.1002/mop.20361

8. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane," Progress In Electromagnetics Research, Vol. 68, 113-150, 2007.
doi:10.2528/PIER06073102

9. Coluccini, G., M. Lucido, and G. Panariello, "TM scattering by perfectly conducting polygonal cross-section cylinders: A new surface current density expansion retaining up to the second-order edge behavior," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 407-412, 2012.
doi:10.1109/TAP.2011.2167924

10. Lucido, M., "An analytical technique to fast evaluate mutual coupling integrals in spectral domain analysis of multilayered coplanar coupled striplines," Microwave and Optical Technology Letters, Vol. 54, No. 4, 1035-1039, 2012.
doi:10.1002/mop.26674

11. Coluccini, G., M. Lucido, and G. Panariello, "Spectral domain analysis of open single and coupled microstrip lines with polygonal cross-section in bound and leaky regimes," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 2, 736-745, 2013.
doi:10.1109/TMTT.2012.2231424

12. Lucido, M., "An efficient evaluation of the self-contribution integrals in the spectral-domain analysis of multilayered striplines," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 360-363, 2013.
doi:10.1109/LAWP.2013.2252139

13. Coluccini, G. and M. Lucido, "A new high efficient analysis of the scattering by a perfectly conducting rectangular plate," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2615-2622, 2013.
doi:10.1109/TAP.2012.2237533

14. Lucido, M., G. Panariello, and F. Schettino, "An EFIE formulation for the analysis of leaky-wave antennas based on polygonal cross-section open waveguides," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 983-986, 2014.
doi:10.1109/LAWP.2014.2323431

15. Di Murro, F., M. Lucido, G. Panariello, and F. Schettino, "Guaranteed-convergence method of analysis of the scattering by an arbitrarily oriented zero-thickness PEC disk buried in a lossy half-space," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3610-3620, 2015.
doi:10.1109/TAP.2015.2438336

16. Lucido, M., F. Di Murro, G. Panariello, and C. Santomassimo, "Fast converging CFIE-MoM analysis of electromagnetic scattering from PEC polygonal cross-section closed cylinders," Progress In Electromagnetics Research B, Vol. 74, 109-121, 2017.
doi:10.2528/PIERB17011803

17. Kantorovich, L. V. and G. P. Akilov, Functional Analysis, 2nd Ed., Pergamon Press, Oxford-Elmsford, N.Y., 1982.

18. Lucido, M., G. Panariello, and F. Schettino, "Scattering by a zero-thickness PEC disk: A new analytically regularizing procedure based on Helmholtz decomposition and Galerkin method," Radio Science, Vol. 52, No. 1, 2-14, 2017.
doi:10.1002/2016RS006140

19. Park, S. and C. A. Balanis, "Dispersion characteristics of open microstrip lines using closed-form asymptotic extraction," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 3, 458-460, Mar. 1997.
doi:10.1109/22.563350

20. Park, S. and C. A. Balanis, "Closed-form asymptotic extraction method for coupled microstrip lines," IEEE Microw. Guided Wave Lett., Vol. 7, No. 3, 84-86, Mar. 1997.
doi:10.1109/75.556040

21. Amari, S., R. Vahldieck, and J. Bornemann, "Using selective asymptotics to accelerate dispersion analysis of microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 7, 1024-1027, Jul. 1998.
doi:10.1109/22.701464

22. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Verlag Harri Deutsch, The Netherlands, 1984.

23. Geng, N. and L. Carin, "Wide-band electromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium," IEEE Trans. Antennas Propag., Vol. 47, 610-619, 1999.
doi:10.1109/8.768799