1. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 9, 1581-1592, Sep. 2001.
doi:10.1109/22.942570 Google Scholar
2. Xu, H., T. Li, and Y. Sun, "The application research of microwave imaging in nondestructive testing of concrete wall," Proc. World Cong. Intell. Control Autom., 5157-5161, Dalian, 2006. Google Scholar
3. Kharkovsky, S. and R. Zoughi, "Microwave and millimeter wave nondestructive testing and evaluation — Overview and recent advances," IEEE Instrum. Meas. Mag., Vol. 10, No. 2, 26-38, Apr. 2007.
doi:10.1109/MIM.2007.364985 Google Scholar
4. Ahmad, F., M. G. Amin, and S. A. Kassam, "Synthetic aperture beamformer for imaging through a dielectric wall," IEEE Trans. Aerosp. Electron. Syst., Vol. 41, No. 1, 271-283, Jan. 2005.
doi:10.1109/TAES.2005.1413761 Google Scholar
5. Amin, M. G., Through-the-wall Radar Imaging, CRC Press, 2016.
6. Nikolova, N. K., "Microwave biomedical imaging," Wiley Encyc. Elec. Electron. Eng., 1-22, Apr. 25, 2014. Google Scholar
7. Conceio, R. C., J. J. Mohr, and M. O’Halloran, An Introduction to Microwave Imaging for Breast Cancer Detection, Springer, 2016.
8. Kwon, S. and S. Lee, "Recent advances in microwave imaging for breast cancer detection," Int. J. Biomed. Imaging, Vol. 2016, 25 pages, Article ID 5054912, 2016. Google Scholar
9. Bindu, G. N., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802 Google Scholar
10. Porter, E., A. Santorelli, and M. Popovic, "Time-domain microwave radar applied to breast imaging: Measurement reliability in a clinical setting," Progress In Electromagnetics Research, Vol. 149, 119-132, 2014.
doi:10.2528/PIER14080503 Google Scholar
11. Wang, X., D. R. Bauer, R. Witte, and H. Xin, "Microwave-induced thermoacoustic imaging model for potential breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 59, No. 10, 2782-2791, Oct. 2012.
doi:10.1109/TBME.2012.2210218 Google Scholar
12. Xia, J., J. Yao, and L. H. V. Wang, "Photoacoustic tomography: Principles and advances (invited review)," Progress In Electromagnetics Research, Vol. 147, 1-22, 2014.
doi:10.2528/PIER14032303 Google Scholar
13. Fear, E. C. and M. A. Stuchly, "Confocal microwave imaging for breast tumor detection: A study of resolution and detection ability," Proc. Int. Conf. IEEE Eng. Med. Bio. Soc., Vol. 3, 2355-2358, 2001. Google Scholar
14. Slaney, M., A. C. Kak, and L. E. Larsen, "Limitations of imaging with first-order diffraction tomography," IEEE Trans. Microw. Theory Techn., Vol. 32, No. 8, 860-874, Aug. 1984.
doi:10.1109/TMTT.1984.1132783 Google Scholar
15. Tu, S., J. J. McCombe, D. S. Shumakov, and N. K. Nikolova, "Fast quantitative microwave imaging with resolvent kernel extracted from measurements," Inverse Probl., Vol. 31, No. 4, 045007 (33 pages), Apr. 2015.
doi:10.1088/0266-5611/31/4/045007 Google Scholar
16. Tricoles, G. and N. H. Farhat, "Microwave holography, applications and techniques," Proc. IEEE, Vol. 65, No. 1, 108-121, Jan. 1998.
doi:10.1109/PROC.1977.10435 Google Scholar
17. Li, J., X. Wang, and T. Wang, "On the validity of Born approximation," Progress In Electromagnetics Research, Vol. 107, 219-237, 2010.
doi:10.2528/PIER10070504 Google Scholar
18. Habashy, T. M., R. W. Groom, and B. R. Spies, "Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering," J. Geophys. Res., Vol. 98, No. B2, 1759-1775, Feb. 1993.
doi:10.1029/92JB02324 Google Scholar
19. Kak, A. and M. Slaney, Principles of Computerized Tomographic Imaging, Society for Industrial and Applied Mathematics, 2001.
doi:10.1137/1.9780898719277
20. Chew, W., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.
21. Nikolova, N. K., Introduction to Microwave Imaging, Cambridge University Press, 2017.
doi:10.1017/9781316084267
22. Tajik, D., D. S. Shumakov, and N. K. Nikolova, "An experimental comparison between the Born and Rytov approximations in microwave tissue imaging," IEEE Int. Microw. Symp., Jun. 2017. Google Scholar
23. Farhat, N. H. and W. R. Guard, "Millimeter wave holographic imaging of concealed weapons," Proc. IEEE, Vol. 59, No. 9, 1383-1384, Sep. 1971.
doi:10.1109/PROC.1971.8441 Google Scholar
24. Amineh, R. K., M. Ravan, J. McCombe, and N. K. Nikolova, "Three-dimensional microwave holographic imaging employing forward-scattered waves only," Int. J. Antennas Propag., Vol. 2013, Article ID 897287 (15 pages), Feb. 2013. Google Scholar
25. Tajik, D., J. R. Thompson, A. S. Beaverstone, and N. K. Nikolova, "Real-time quantitative reconstruction based on microwave holography," IEEE Int. Symp. Antennas Propag. (APS/URSI), 851-852, Fajardo, PR, 2016. Google Scholar
26. Amineh, R. K., J. J. McCombe, A. Khalatpour, and N. K. Nikolova, "Microwave holography using point-spread functions measured with calibration objects," IEEE Trans. Instrum. Meas., Vol. 64, No. 2, 403-417, Feb. 2015.
doi:10.1109/TIM.2014.2347652 Google Scholar
27. Thompson, J. R., J. J. McCombe, S. Tu, and N. K. Nikolova, "Quantitative imaging of dielectric objects based on holographic reconstruction," 2015 IEEE Radar Conf. (RadarCon), 679-683, May 2015.
doi:10.1109/RADAR.2015.7131082 Google Scholar
28. Khare, K., Fourier Optics and Computational Imaging, Wiley, 2016.
29. Mohamed, S. A., E. D. Mohamed, M. F. Elshikh, and M. A. Hassan, "Design of digital apodization technique for medical ultrasound imaging," Int. Conf. Comput., Electr. Electron. Eng., 541-544, Khartoum, 2013. Google Scholar
30. Bell, R., "Introduction to Fourier transform spectroscopy," Science, 2012. Google Scholar
31. Beaverstone, A. S., D. S. Shumakov, and N. K. Nikolova, "Frequency-domain integral equations of scattering for complex scalar responses," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 4, 1120-1132, Apr. 2016.
doi:10.1109/TMTT.2016.2638428 Google Scholar
32. Pastorino, M., Microwave Imaging, Wiley, 2010.
doi:10.1002/9780470602492
33. Natterer, F., "An error bound for the Born approximation," Inverse Probl., Vol. 20, No. 2, 447-452, 2004.
doi:10.1088/0266-5611/20/2/009 Google Scholar
34. Slaney, M., A. C. Kak, and L. E. Larsen, "Limitations of imaging with first-order diffraction tomography," IEEE Trans. Microw. Theory Tech., Vol. 32, No. 8, 860-874, 1984.
doi:10.1109/TMTT.1984.1132783 Google Scholar
35. Brown, M. A. and R. C. Semelka, MRI: Basic Principles and Applications, Wiley, 2015.
doi:10.1002/9781119013068
36. Ansorge, R. and M. Graves, The Physics and Mathematics of MRI, Morgan and Claypool, 2016.
doi:10.1088/978-1-6817-4068-3
37. Goodman, J. W., Introduction to Fourier Optics, Roberts and Company, 2005.
38. Szabo, T. L., Diagnostic Ultrasound Imaging: Inside and Out, Elsevier, 2014.
39. Jerri, A. J., The Gibbs Phenomenon in Fourier Analysis, Splines, and Wavelet Approximations, Springer-Science Business Media, B. V., 2010.
40. EM Software & Systems — S. A. (Pty) Ltd., , FEKO Suite 7.0.1 for Altair, USA, 2016.
41. Keysight (Agilent) Technologies "Dielectric Probe Kit 200 MHz to 50 GHz, 85070E,", USA, 2014. Google Scholar
42. Shumakov, D. S., A. S. Beaverstone, and N. K. Nikolova, "De-noising algorithm for enhancing microwave imaging," J. Eng., 5 pages, 2017. Google Scholar
43. Amineh, R. K., A. Trehan, and N. K. Nikolova, "TEM horn antenna for ultra-wide band microwave breast imaging," Progress In Electromagnetics Research B, Vol. 13, 59-74, 2009.
doi:10.2528/PIERB08122213 Google Scholar
44. The MathWorks, Inc., , MATLAB 2016a, USA, 2016.