Vol. 72
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-01-15
A Compact via-Less Metamaterial Wideband Bandpass Filter Using Split Circular Rings and Rectangular Stub
By
Progress In Electromagnetics Research Letters, Vol. 72, 99-106, 2018
Abstract
A compact via-less metamaterial (MTM) wideband bandpass filter using split circular rings, meander-line and rectangular stub is reported in this letter. The split circular rings produce series capacitance and a meander line along with a rectangular stub gives shunt inductance and capacitance. The measured insertion loss has 0.60 dB and return loss above 15 dB with 3 dB fractional bandwidth 74.28% at centre frequency 3.5 GHz. The zeroth order resonance frequency of proposed filter is guarded by shunt parameters due to its open ended boundary condition. The electrical size of the suggested filter is 0.12λgx0.22λg at ZOR frequency of 2.3 GHz. The designed structure has been fabricated and experimentally validated. The designed filter offers group delay variation between 0.2 ns to 0.7 ns within the passband. It is suitable for WLAN, WiMAX, Bluetooth applications.
Citation
Dilip Kumar Choudhary, and Raghvendra Kumar Chaudhary, "A Compact via-Less Metamaterial Wideband Bandpass Filter Using Split Circular Rings and Rectangular Stub," Progress In Electromagnetics Research Letters, Vol. 72, 99-106, 2018.
doi:10.2528/PIERL17092503
References

1. Zhang, S. and L. Zhu, "Compact and high-selectivity microstrip bandpass filter using triple-/quadmode stub-loaded resonators," IEEE Antenna and Wireless Propagation Letters, Vol. 21, 522-524, 2011.

2. Fan, J., D. Zhan, C. Jin, and J. Luo, "Wideband microstrip bandpass filter based on quadruple mode ring resonator," IEEE Microwave and Wireless Components Letters, Vol. 22, 348-350, 2012.
doi:10.1109/LMWC.2012.2199977

3. Sun, S. and L. Zhu, "Wideband microstrip ring resonator bandpass filters under multiple resonances," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 2176-2182, 2007.
doi:10.1109/TMTT.2007.906510

4. Caloz, C. and T. Itoh, "Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications," Wiley, Hoboken, NJ, USA, 2006.

5. Lai, A., C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, 34-50, 2004.
doi:10.1109/MMW.2004.1337766

6. Choudhary, D. K. and R. K. Chaudhary, "A compact Coplanar Waveguide (CPW)-fed zerothorder resonant filter for bandpass applications," Frequenz Journal of RF-Engineering and Telecommunications.

7. Bojra, A. L., A. Belenguer, J. Cascon, H. Esteban, and V. E. Boria, "Wideband passband transmission line based on metamaterial-inspired CPW balanced cells," IEEE Antenna and Wireless Propagation Letters, Vol. 10, 1421-1424, 2011.
doi:10.1109/LAWP.2011.2178385

8. Bonache, J., F. Martin, I. Gil, J. G. Garcia, R. Marque, and M. Sorolla, "Microstrip bandpass filters with wide bandwidth and compact dimensions," Microwave and Optical Technology Letters, Vol. 46, 343-346, 2005.
doi:10.1002/mop.20982

9. Martel, J., J. Bonache, R. Marques, F. Martin, and F. Medina, "Design of wide-band semi-lumped bandpass filters using open split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 17, 28-30, 2007.
doi:10.1109/LMWC.2006.887246

10. Satish, G. N., K. V. Srivastava, A. Biswas, and D. Kettle, "A via-free left handed transmission line with radial stubs," Asia-Pacific Microwave Conference Proceedings (APMC), 2501-2504, 2009.

11. Jiang, X. Y. and M. Palandoken, Metamaterial: Metamaterial-Based Compact Filter Design, Ch. 12, 513–532, Intech, 2012, ISBN: 978-953-51-0591-6.

12. Palandoken, M. and A. Sondas, "Compact metamaterial based band-stop filter," Microwave Journal, Vol. 57, No. 10, 76-84, Oct. 2014.

13. Palandoken, M. and M. H. B. Ucar, "Compact metamaterial-inspired band-pass filter," Microwave and Optical Technology Letters, Vol. 56, No. 12, 2903-2907, Dec. 2014.
doi:10.1002/mop.28724

14. Hashemi, M. R. M. and T. Itoh, "Dual-band composite right/left-handed metamaterial concept," IEEE Microwave and Wireless Components Letters, Vol. 22, 248-250, 2012.
doi:10.1109/LMWC.2012.2191274

15. Pozar, D. M., Microwave Engineering, Wiley, 2011.

16. Choudhary, D. K. and R. K. Chaudhary, "Vialess wideband bandpass filter using CRLH transmission line with semi-circular stub," International Conference on Microwave and Photonics (ICMAP), 1-2, 2015.

17. Li, C. and F. Li, "Microstrip bandpass filters based on zeroth-order resonators with complementary split ring resonators," IET Microwave Antennas Propagation, Vol. 3, 276-280, 2009.
doi:10.1049/iet-map:20070280

18. Yechou, L., A. Tribak, M. Kacim, J. Zbitou, and A. M. Sanchez, "A novel wideband bandpass filter using coupled linesand T-shaped transmission lines with wide stopband on low-cost substrate," Progress In Electromagnetics Research C, Vol. 67, 143-152, 2016.
doi:10.2528/PIERC16062204

19. Wu, Y. D., G. H. Li, W. Yang, and X. X. Yang, "Design of compact wideband QMSIW band-pass filter with improved stopband," Progress In Electromagnetics Research Letters, Vol. 65, 75-79, 2017.

20. Xiao, J. K., M. Zhu, Y. Li, and J. G. Ma, "Coplanar waveguide bandpass filters with separate electric and magnetic couplings," Electronics Letter, Vol. 52, 12-124, 2016.

21. Tang, M., T. Shi, and X. Tan, "A novel triple-mode hexagon bandpass filter with meander line and central-loaded stub," Microwave and Optical Technology Letters, Vol. 58, 9-12, 2016.
doi:10.1002/mop.29483

22. Feng, W., X. Gao, and W. Che, "Bandpass filters with improved selectivity based on dual-mode ring resonators," Progress In Electromagnetics Research Letters, Vol. 56, 1-7, 2015.
doi:10.2528/PIERL15072609