1. Lee, Y. H. and T. Oh, "The measurement of P-, S-, and R-wave velocities to evaluate the condition of reinforced and prestressed concrete slabs," Advances in Materials Science and Engineering, Vol. 2016, 14 pages, Article ID 1548215, 2016, doi:10.1155/2016/1548215. Google Scholar
2. Rix, G., C. Lai, and S. Foti, "Simultaneous measurement of surface wave dispersion and attenuation curves," Geotechnical Testing Journal, Vol. 24, No. 4, 350-358, 2001.
doi:10.1520/GTJ11132J Google Scholar
3. Joseph, O. and J. Laurence, Characterization of Rayleigh Wave Propagation in Concrete Using Laser Ultrasonic, Springer, 1998.
4. Liu, P. L., K. H. Lee, T. T. Wu, and M. K. Kuo, "Scan of surface-opening cracks in reinforced concrete using transient elastic waves," NDT & E International, Vol. 34, No. 3, 219-226, 2001.
doi:10.1016/S0963-8695(00)00061-X Google Scholar
5. Lei, W. and F. G. Yuan, "Active damage localization technique based on energy propagation of Lamb waves," Smart Structures and Systems, Vol. 3, No. 2, 201-217, 2006. Google Scholar
6. Liu, X., L. Bo, Y, Liu, Y. Zhao, J. Zhang, N. Hu, and M. Deng, "Location identification of closed crack based on Duffing oscillator transient transition," Journal of Sound and Vibration, Vol. 100, 384-397, 2017.
doi:10.1016/0022-460X(88)90312-4 Google Scholar
7. Liu, X., L. Bo, Y, Liu, Y. Zhao, J. Zhang, N. Hu, and M. Deng, "Detection of micro-cracks using nonlinear lamb waves based on the Duffing-Holmes system," Journal of Sound and Vibration, Vol. 406, 175-186, 2017.
doi:10.1016/j.jsv.2017.05.044 Google Scholar
8. Scalerandi, M., S. Gliozzi, and C. Bruno, "Detection and location of cracks using loss of reciprocity in ultrasonic waves propagation," Journal of the Acoustical Society of America, Vol. 131, EL81, 2012.
doi:10.1121/1.3664103 Google Scholar
9. Soorgee, M. H. and K. A. Yousef, "Crack diagnosis in beams using propagated waves and Hilbert Huang transformation," 4th International Conference on NDT, Hellenic Society for NDT, China, Crete Greece, 2007. Google Scholar
10. Ben Khalifa, W., K. Jezzine, and S. Grondel, "3D modeling of Rayleigh wave acoustic emission from a crack under stress," Acoustics 2012 Nantes Conference, French Acoustic Society, paper 000593, 2627–2632, 2013. Google Scholar
11. Moser, F., L. Jacobs, and J. Qu, "Modeling elastic wave propagation in waveguides with the finite element method," NDT & E International, Vol. 32, 225-234, 1999.
doi:10.1016/S0963-8695(98)00045-0 Google Scholar
12. Olsson, D., "Numerical simulations of energy absorbing boundaries for elastic wave propagation in thick concrete structures subjected to impact loading,", Master of Science Thesis, Umea University, 2012. Google Scholar
13. Zerwer, A., M. A. Polak, and J. C. Santamarina, "Detection of surface breaking cracks in concrete members using rayleigh waves," Journal of Environmental and Engineering Geophysics, JEEG, Vol. 10, No. 3, 295-306, September 2005.
doi:10.2113/JEEG10.3.295 Google Scholar
14. Iodice, M., J. Muggleton, and E. Rustighi, "The detection of vertical cracks in asphalt using seismic surface wave methods," Journal of Physics: Conference Series, Vol. 744, 2016. Google Scholar
15. Delrue, S. and V. Aleshin, "2D modeling for acoustic waves in solids with frictional cracks," 23rd French Conference of Mechanics, 2017. Google Scholar
16. Haw, K. C., M. Shohei, and S. Tomoki, "Characterization of deep surface opening crack in concrete," ACI Material Journal, Vol. 107, No. 3, 306-311, 2010. Google Scholar
17. Foo, W. L., S. L. Kok, and K. C. Hwa, "Determination and extraction of Rayleigh-waves for concrete cracks characterization based on matched filtering of center of energy," Journal of Sound and Vibration, Vol. 363, 303-315, 2016. Google Scholar
18. Foo, W. L., S. L. Kok, and K. C. Hwa, "Assessment of reinforced concrete surface breaking crack using Rayleigh wave measurement," Journal of Sensors, Vol. 16, No. 3, 337, 2016.
doi:10.3390/s16030337 Google Scholar
19. Gang, W., "Beam damage uncertainty quantification using guided Lamb wave responses," Journal of Intelligent Material Systems and Structure, special issue, DOI: 10.1177/1045389X17704911, 2017. Google Scholar
20. Dimitrina, K., "Vibration-based methods for detecting a crack in a simply supported beam," Journal of Theoretical and Applied Mechanics, Vol. 44, No. 4, 69-82, 2014.
doi:10.2478/jtam-2014-0023 Google Scholar
21. Li, B., X. Chen, J. Ma, and Z. He, "Detection of crack location and size in structures using wavelet finite element methods," Journal of Sound and Vibration, Vol. 285, No. 5, 767-782, 2005.
doi:10.1016/j.jsv.2004.08.040 Google Scholar
22. Mehta, P., A. Kureshi, S. Lad, A. Patel, and D. Sharma, "Detection of cracks in a cantilever beam using signal processing and strain energy based model," Materials Science and Engineering, Vol. 234, 012008, doi:10.1088/1757-899X/234/1/012008, 2017. Google Scholar
23. Yong, J., L. Bing, Z. Zhou, and C. Xue, "Identification of crack location in beam structures using wavelet transform and fractal dimension," Shock and Vibration, Vol. 2015, Article ID 832763, 2015. Google Scholar