Vol. 80
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-01-25
A Broad-Side Coupled SRR Inspired CPW Fed Dual Band Antenna for WiMAX and Wave Applications
By
Progress In Electromagnetics Research C, Vol. 80, 221-231, 2018
Abstract
In present scenario, this paper intends to demonstrate the practicality of a miniaturized coplanar waveguide fed metamaterial inspired antenna that can be effectively operated at dual bands. A broad-side coupled Split Ring Resonator is used to obtain dual bands with an impedance bandwidth (-10 dB) of 840 MHz (3.00-3.84 GHz) and 310 MHz (5.94-6.25 GHz), which resonates at dual bands, viz., 3.42 GHz and 6.07 GHz. The impedance bandwidth (S11<-10 dB) is 25% for the first band and 5.1% for the second band. The size of the antenna is 31 × 25 × 1.6 mm3 realized on a low-cost FR-4 Epoxy substrate. This antenna can be effectively utilized in worldwide interoperability for microwave access (WiMAX) and wireless access in vehicular environments (WAVE) applications. The prototype of the proposed antenna is fabricated and measured. Simulated and measured results are in agreeing nature. Experimental and simulated analyses of the antenna including parametric and dispersion characteristics are dealt in this communication.
Citation
Nambiyappan Thamil Selvi, Palavesa Nadar Thiruvalar Selvan, Shanmugaih P. Babu, Ramasamy Pandeeswari, and Raphael Samson Daniel, "A Broad-Side Coupled SRR Inspired CPW Fed Dual Band Antenna for WiMAX and Wave Applications," Progress In Electromagnetics Research C, Vol. 80, 221-231, 2018.
doi:10.2528/PIERC17101902
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699        Google Scholar

2. Caloz, C. and T. Itoh, "Electromagnetic metamaterials: Transmission line theory and microwave applications," Wiley — IEEE Press, New York, 2005.        Google Scholar

3. Marques, R., F. Martina, and M. Sorolla, "Metamaterials with negative parameters: Theory, design and microwave applications," Wiley — Interscience, 2007.        Google Scholar

4. Si, L. M., W. Zhu, and H. J. Sun, "A compact, planar, and CPW-fed metamaterial-inspired dualband antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 305-308, 2013, doi: 10.1109/LAWP.2013.2249037.
doi:10.1109/LAWP.2013.2249037        Google Scholar

5. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired Efficient electrically small antennas," IEEE Transactions Antennas Propagation Letters, Vol. 56, No. 3, 691-707, 2008, doi: 10.1109/TAP.2008.916949.
doi:10.1109/TAP.2008.916949        Google Scholar

6. Basaran, S. C. and Y. E. Erdemli, "A dual band split ring monopole antenna for WLAN applications," Microwave and Optical Technology Letters, Vol. 51, 2685-2688, 2009, doi: 10.1002/mop.24708.
doi:10.1002/mop.24708        Google Scholar

7. Liu, H.-W., C.-H. Ku, and C.-F. Yang, "Novel CPW-fed planar monopole antenna for WiMAX/WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 240-243, 2010, doi: 10.1109/LAWP.2010.2044860.
doi:10.1109/LAWP.2010.2044860        Google Scholar

8. Yang, K., H. Wang, Z. Lei, Y. Xie, and H. Lai, "CPW-fed slot antenna with triangular SRR terminated feed line for WLAN/WiMAX applications," Electronics Letters, Vol. 47, 685-686, 2011, doi: 10.1049/el.2011.1232.
doi:10.1049/el.2011.1232        Google Scholar

9. Quan, X. L., R. L. Li, Y. H. Cui, and M. M. Tentzeris, "Analysis and design of a compact dual-band directional antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 547-550, 2012, doi: 10.1109/LAWP.2012.2199458.
doi:10.1109/LAWP.2012.2199458        Google Scholar

10. Pandeeswari, R. and S. Raghavan, "A CPW-fed triple band OCSRR embedded monopole antenna with modified ground for WLAN and Wi-MAX applications," Microwave and Optical Technology Letters, Vol. 57, 2413-2418, 2015, doi: 10.1002/mop.29352.
doi:10.1002/mop.29352        Google Scholar

11. Sharma, S. K. and R. K. Chaudhary, "Dual-band metamaterial-inspired antenna for mobile applications," Microwave and Optical Technology Letters, Vol. 57, 1444-1447, 2015, doi: 10.1002/mop.29113.
doi:10.1002/mop.29113        Google Scholar

12. Rajeshkumar, V. and S. Raghavan, "A compact asymmetric monopole antenna with electrically coupled SRR for WiMAX/WLAN/UWB applications," Microwave and Optical Technology Letters, Vol. 57, 2194-2197, 2015, doi: 10.1002/mop.29298.
doi:10.1002/mop.29298        Google Scholar

13. Imaculate Rosaline, S. and S. Raghavan, "A compact dual band antenna with an ENG SRR cover for SAR reduction," Microwave and Optical Technology Letters, Vol. 57, 741-747, 2015, doi:10.1002/mop.28941.
doi:10.1002/mop.28941        Google Scholar

14. Rajeshkumar, V. and S. Raghavan, "Trapezoidal ring quad-band fractal antenna for WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 56, 2545-2548, 2014, doi: 10.1002/mop.28631.
doi:10.1002/mop.28631        Google Scholar

15. Kaur, J. and R. Khanna, "Development of dual-band microstrip patch antenna for WLAN/MIMO/WiMAX/AMSAT/WAVE applications," Microwave and Optical Technology Letters, Vol. 56, 988-993, 2014, doi: 10.1002/mop.28206.
doi:10.1002/mop.28206        Google Scholar

16. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, 2388-2392, 2014, doi: 10.1002/mop.28602.
doi:10.1002/mop.28602        Google Scholar

17. Pandeeswari, R. and S. Raghavan, "Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement," Microwave and Optical Technology Letters, Vol. 57, 292-296, 2015, doi: 10.1002/mop.28835.
doi:10.1002/mop.28835        Google Scholar

18. Pandeeswari, R. and S. Raghavan, "Meandered CPW-fed hexagonal split-ring resonator monopole antenna for 5.8 GHz RF-ID applications," Microwave and Optical Technology Letters, Vol. 57, 681-684, 2015, doi: 10.1002/mop.28920.
doi:10.1002/mop.28920        Google Scholar

19. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Review B, Vol. 65, 195104-195109, 2002, doi: https://doi.org/10.1103/PhysRevB.65.195104.
doi:10.1103/PhysRevB.65.195104        Google Scholar

20. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001, doi: 10.1126/science.1058847.
doi:10.1126/science.1058847        Google Scholar

21. Chen, H., J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, and J. A. Kong, "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method," Optical Express, Vol. 14, 12944-12949, 2006, https://doi.org/10.1364/OE.14.012944.
doi:10.1364/OE.14.012944        Google Scholar

22. Bilotti, F., A. Toscano, L. Vegni, K. Aydin, K. B. Alice, and E. Ozbay, "Equivalent circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Transactionson Microwave Theory and Techniques, Vol. 55, 2865-2872, 2007, doi: 10.1109/TMTT.2007.909611.
doi:10.1109/TMTT.2007.909611        Google Scholar

23. Valagiannopoulos, C. A., "On smoothening the singular field developed in the vicinity of metallic edges," International Journal of Applied Electromagnetics and Mechanics, Vol. 31, No. 2, 67-77, 2009, doi: 10.3233/JAE-2009-1048.        Google Scholar

24. Fikioris, G. and C. A. Valagiannopoulos, "Input admittances arising from explicit solutions to ntegral equations for infinite-length dipole antennas," Progress In Electromagnetics Research, Vol. 55, 285-306, 2005.
doi:10.2528/PIER05031701        Google Scholar

25. Liu, W.-C., "Optimal design of dualband CPW-fed G-shaped monopole antenna for WLAN application," Progress In Electromagnetics Research, Vol. 74, 21-38, 2007.
doi:10.2528/PIER07041401        Google Scholar

26. Valagiannopoulos, C. A., "A novel methodology for estimating the permittivity of a specimen rod at low radio frequencies," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5–6, 631-640, 2010.
doi:10.1163/156939310791036331        Google Scholar

27. Valagiannopoulos, C. A., "Single-series solution to the radiation of loop antenna in the presence of a conducting sphere," Progress In Electromagnetics Research, Vol. 71, 277-294, 2007.
doi:10.2528/PIER07030803        Google Scholar

28. Liu, X. L., Y.-Z. Yin, P. A. Liu, J. H. Wang, and B. Xu, "A CPW-fed dual band-notched UWB antenna with a pair of bended dual-L-shape parasitic branches," Progress In Electromagnetics Research, Vol. 136, 623-634, 2013.
doi:10.2528/PIER12122507        Google Scholar

29. Valagiannopoulos, C. A., "High selectivity and controllability of a parallel-plate component with a filled rectangular ridge," Progress In Electromagnetics Research, Vol. 119, 497-511, 2011.
doi:10.2528/PIER11062603        Google Scholar