Vol. 83
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-04-27
Experimental Studies and Analysis on IEMI Source, Field Propagation and IEMI Coupling to Power Utility System
By
Progress In Electromagnetics Research C, Vol. 83, 229-244, 2018
Abstract
Intentional Electromagnetic Interference (IEMI) is one of the applications of High Power Electromagnetics (HPEM) for causing intentional interference in military targets such as C4I (Command, Control, Communication, Computer and Intelligence) targets and segments of civilian systems like critical VSAT's (Very Small Aperture Terminals), power grid and communication network, weather and air-traffic control radars etc. HPEM essentially consists of generation of intense electromagnetic waves either as High Power Microwave (HPM) or Ultra Wide Band (UWB) waves to cause electromagnetic interference. High power UWB waves are promising candidate for IEMI application. One such UWB source, developed for the purpose of radiating high intensity, fast rise time, short pulses, is the Half Impulse Radiating Antenna (HIRA) which covers a frequency range of 100 MHz to 6 GHz. In this paper, characteristics of UWB source i.e., HIRA, such as characteristics of electric field in both boresight and off-boresight, far field boundary and radiation pattern were computed. The UWB pulse dispersion through civil infrastructure and their coupling to power cables were studied experimentally.
Citation
Divya Shyamala, Rakesh Kichouliya, Pawan Kumar, Sandeep Satav, and Dasari Rama Krishna, "Experimental Studies and Analysis on IEMI Source, Field Propagation and IEMI Coupling to Power Utility System," Progress In Electromagnetics Research C, Vol. 83, 229-244, 2018.
doi:10.2528/PIERC17111706
References

1. Giri, D. V. and F. M. Tesche, "Classification of intentional electromagnetic environments (IEME)," IEEE Transactions on Electromagnetic compatibility, Vol. 46, No. 3, 322-328, 2004.
doi:10.1109/TEMC.2004.831819

2. Wilson, C., "High altitude electromagnetic pulse (HEMP) and high power microwave (HPM) devices: Threat assessments,", Library of CongressWashington DC Congressional Research Service, 2008.

3. Radasky, W. A., C. E. Baum, and M. W. Wik, "Introduction to the special issue on high-power electromagnetics (HPEM) and intentional electromagnetic interference (IEMI)," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, 314-321, 2004.
doi:10.1109/TEMC.2004.831899

4. Giri, D. V., High-power Electromagnetic Radiators: Nonlethal Weapons and Other Applications, Harvard University Press, 2004.

5. Santini, L., G. B. Forleo, and M. Santini, "Implantable devices in the electromagnetic environment," Journal of Arrhythmia, Vol. 29, No. 6, 325-333, 2013.
doi:10.1016/j.joa.2013.06.004

6. Satav, S. M., "High power electromagnetic and its defence applications," Science Day Oration Paper, EMC Technology Centre, Research Centre Imarat, Hyderabad, India, 2014.

7. Baum, C. E., et al. "JOLT: A highly directive, very intensive, impulse-like radiator," Proceedings of the IEEE, Vol. 92, No. 7, 1096-1109, 2004.
doi:10.1109/JPROC.2004.829011

8. Farr, E. G. and C. A. Frost, "Development of a reflector IRA and a solid dielectric lens IRA, Part I: Design, predictions, and construction," Sensor and Simulation Notes 396, March 27, 1996.

9. Miller, E. K. (ed.), Time-domain Measurements in Electromagnetics, Springer Science & Business Media, November 30, 1986.

10. Farr, E. G. and G. D. Sower, "Design principles of half impulse radiating antennas," Sensor and Simulation Note 390, December 1995.

11. Yao, L., et al. "Compensation of the offset in numerical integration of a D-dot sensor measurement ," 2014 3rd Asia-Pacific Conference on IEEE Antennas and Propagation (APCAP), 2014.

12. Romero, C., et al. "Modified ground plane geometry for a half impulse radiating antenna," 2017 International Conference on IEEE Electromagnetics in Advanced Applications (ICEAA), 2017.

13. Benford, J., J. A. Swegle, and E. Schamiloglu, High Power Microwaves, CRC Press, 2016.

14. Balanis, C. A., Antenna Theory and Design, Wiley India, 2016.

15. Backstrom, M. G. and K. G. Lovstrand, "Susceptibility of electronic systems to high-power microwaves: Summary of test experience," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, 396-403, 2004.
doi:10.1109/TEMC.2004.831814

16. Amin, M. G. (ed.), Through-the-Wall Radar Imaging, CRC Press, 2011.

17. Savage, E. and W. Radasky, "Overview of the threat of IEMI (intentional electromagnet interference)," 2012 IEEE International Symposium on Electromagnetic Compatibility (EMC), IEEE, 2012.

18. Rachidi, F. and S. Tkachenko, Electromagnetic Field Interaction with Transmission Lines: From Classical Theory to HF Radiation Effects, Vol. 5, WIT Press, 2008.
doi:10.2495/978-1-84564-063-7

19. Rakesh, K. and M. J. Thomas, "Interaction of high power electromagnetic pulses with power cables and electronic systems," 2016 IEEE International Symposium on Electromagnetic Compatibility (EMC), 159-163, IEEE, 2016.

20. Paul, C. R., Introduction to Electromagnetic Compatibility, Vol. 184, John Wiley & Sons, 2006.

21. Ianoz, M., "A comparison between HEMP and HPEM parameters. Effects and mitigation methods," Asia-Pacific Symposium on IEEE Electromagnetic Compatibility and 19th International Zurich Symposium on Electromagnetic Compatibility, 2008.