Vol. 81
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-03-06
Solving the Problem of Electromagnetic Wave Scattering on Small Impedance Particle by Integral Equation Method
By
Progress In Electromagnetics Research C, Vol. 81, 211-223, 2018
Abstract
The problem of electromagnetic (EM) wave scattering on small particles is reduced to solving the Fredholm integral equation of the second kind. Integral representation of solution to the scattering problem leads to necessity to determine some unknown function contained in integrand of this equation. The respective linear algebraic system (LAS) for the components of this unknown vector function is derived and solved by the successive approximation method. The region of convergence of the proposed method is substantiated. The numerical results show rapid convergence of the method in the wide region of the physical and geometrical parameters of problem. Comparison of the obtained results with Mie type and asymptotic solutions demonstrates high degree of accuracy of the proposed method. The numerical results of scattering on particles of several forms and sizes are presented.
Citation
Mykhaylo I. Andriychuk, "Solving the Problem of Electromagnetic Wave Scattering on Small Impedance Particle by Integral Equation Method," Progress In Electromagnetics Research C, Vol. 81, 211-223, 2018.
doi:10.2528/PIERC17120204
References

1. Andriychuk, M. I. and A. G. Ramm, "Scattering by many small particles and creating materials with a desired refraction coefficient," Intern. Journ. of Computing Science and Mathematics, Vol. 3, No. 1/2, 102-121, 2010.
doi:10.1504/IJCSM.2010.033929        Google Scholar

2. Andriychuk, M. I., S. W. Indratno, and A. G. Ramm, "Electromagnetic wave scattering by a small impedance particle: Theory and modeling," Optics Communications, Vol. 285, 1684-1691, 2012.
doi:10.1016/j.optcom.2011.12.055        Google Scholar

3. Attaran, A., W. B. Handler, K. Wawrzyn, R. S. Menon, and B. A. Chronik, "Reliable RF B/E-field probes for time-domain monitoring of EM exposure during medical device testing," IEEE Trans. Antennas Propagat., Vol. 65, No. 9, 4815-4823, 2017.
doi:10.1109/TAP.2017.2723085        Google Scholar

4. Barber, P. W. and S. C. Hill, Light Scattering by Particles: Computational Methods, World Scientific, Singapure, 1990.
doi:10.1142/0784

5. Chen, Y., Y. Ge, G. B. M. Heuvelink, R. An, and Y. Chen, "Object-based superresolution land-cover mapping from remotely sensed imagery," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 1, 328-340, 2018.
doi:10.1109/TGRS.2017.2747624        Google Scholar

6. Faran, J. J., "Sound scattering by solid cylinders and spheres," J. Acoust. Soc. Amer., Vol. 23, No. 4, 405-418, July 1951.
doi:10.1121/1.1906780        Google Scholar

7. Gensheimer, P. D., C. K. Walker, R. W. Ziolkowski, and C. D. D’Aubigny, "Full-scale three-dimensional electromagnetic simulations of a terahertz folded-waveguide traveling-wave tube using ICEPIC," IEEE Transactions on Terahertz Science and Technology, Vol. 2, No. 2, 222-230, 2012.
doi:10.1109/TTHZ.2011.2178931        Google Scholar

8. Glisson, A. W., "Electromagnetic scattering by arbitrarily shaped surfaces with impedance boundary conditions," Radio Sci., Vol. 27, No. 6, 935-943, November 1992.
doi:10.1029/92RS01782        Google Scholar

9. Helander, J., A. Ericsson, M. Gustafsson, T. Martin, D. Shoberg, and C. Larsson, "Compressive sensing techniques for mm-wave nondestructive testing of composite panels," IEEE Trans. Antennas Propagat., Vol. 65, No. 10, 5523-5531, 2017.
doi:10.1109/TAP.2017.2738034        Google Scholar

10. Van De Hulst, H. G., Light Scattering by Small Particles, Dover, New York, 1981.

11. Ishimaru, A., Electromagnetic Wave Propagation, Radiation and Scattering, Englewood Cliffs, Prentice-Hall, NJ, 1991.

12. Kantorovich, L. V. and V. I. Krylov, Approximate Methods of Higher Analysis, Noordhoff, Groningen, 1958.

13. Kaye, M., P. K. Murthy, and G. A. Thiele, "An iterative method for solving scattering problems," IEEE Trans. Antennas Propagat., Vol. 33, No. 11, 1272-1279, November 1985.
doi:10.1109/TAP.1985.1143510        Google Scholar

14. Ko, W. L. and R. Mittra, "A new approach based on a combination of integral equation and asymptotic techniques for solving electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. 25, No. 2, 187-1977, March 19.
doi:10.1109/TAP.1977.1141571        Google Scholar

15. Korn, G. A. and T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, 1968.

16. Kyurkchan, A. G. and S. A. Manenkov, "Solving the problem of electromagnetic wave diffraction at a finite plane grating with small elements," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 180, 92-100, 2016.
doi:10.1016/j.jqsrt.2016.04.014        Google Scholar

17. Landau, L., E. Lifschitz, and L. Pitaevsky, Electromagnetizm of Continuous Medium, Pergamon Press, Oxford, 1984.

18. Lu, K.-Y., S.-C. Tuan, H.-T. Chou, and H.-H. Chou, "Analytical analysis of electromagnetic transient scattering from perfectly conducting ellipsoidal surfaces illuminated by a plane wave," Proc. of IEEE International Symposium on Antennas and Propagation (APS-URSI), 2523-2526, 2011.        Google Scholar

19. Mason, W. P. and R. N. Thurston, "Physical acoustics principles and methods," Academic, Vol. XV, 191-202, New York, 1981.        Google Scholar

20. Medgyesi-Mitschang, L. N. and J. M. Putman, "Integral equation formulations for imperfectly conducting scatterers," IEEE Trans. Antennas Propagat., Vol. 33, No. 2, 206-214, February 1985.
doi:10.1109/TAP.1985.1143560        Google Scholar

21. Mie, G., "Beitrage zur Optik tr¨uber Medien, speciell kolloidaler Metallosungen," Annalen der Physik, Vol. 330, No. 3, 377-445, 1908.
doi:10.1002/andp.19083300302        Google Scholar

22. Mishchenko, M. I., L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles, Cambridge University Press, 2002.

23. Muller, C., Foundations of the Mathematical Theory of Electromagnetic Waves, Springer-Verlag, Berlin, 1969.
doi:10.1007/978-3-662-11773-6

24. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, 1st Ed., Wiley IEEE Press, 1977.

25. Poggio, A. J. and E. K. Miller, "Integral equation solutions of three dimensional scattering problems," Computer Techniques for Electrornagnetics, R. Mittra, ed., Chap. 4, Pergamon, Oxford, 1973.        Google Scholar

26. Rao, S., "Innovative antenna front ends from L-band to Ka-band," IEEE Antennas & Propagation Magazine, Vol. 59, No. 5, 116-129, October 2017.        Google Scholar

27. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818        Google Scholar

28. Ramm, A. G., Wave Scattering by Small Bodies of Arbitrary Shapes, World Scientific, Singapure, 2005.
doi:10.1142/5765

29. Ramm, A. G., "Many-body wave scattering by small bodies and applications," J. Math. Phys., Vol. 48, No. 10, 103511, 2007.
doi:10.1063/1.2799258        Google Scholar

30. Ramm, A. G., "Wave scattering by many small particles embedded in a medium," Phys. Lett. A, Vol. 372/17, 3064-3070, 2008.
doi:10.1016/j.physleta.2008.01.006        Google Scholar

31. Ramm, A. G., "Electromagnetic wave scattering by many small bodies and creating materials with a desired refraction coefficient," Progress In Electromagnetics Research M, Vol. 13, 203-215, 2010.
doi:10.2528/PIERM10072307        Google Scholar

32. Ramm, A. G., "Scattering by many small inhomogeneities and applications,", Topics in Chaotic Systems, Selected Papers from Chaos 2010 International Conference, C. Skiadas, I. Dimotikalis, C. Skiadas, ed., 41-52, World Sci. Publishing, 2011.        Google Scholar

33. Ramm, A. G. and M. I. Andriychuk, "Application of the asymptotic solution to EM field scattering problem for creation of media with prescribed permeability," J. Appl. Math. Comput., Vol. 45, No. 1, 461-85, 2014.
doi:10.1007/s12190-013-0732-7        Google Scholar

34. Ramm, A. G. and M. I. Andriychuk, "Calculation of electromagnetic wave scattering by a small impedance particle of an arbitrary shape," Mathematical Modeling of Natural Phenomena, Vol. 9, No. 5, 254-269, 2014.
doi:10.1051/mmnp/20149517        Google Scholar

35. Rylander, T., A. Bondeson, and P. Ingelstrom, Computational Electromagnetics, 2nd Ed., Springer, 2012.

36. Sheng, X.-Q., J.-M. Jin, J. Song, C.-C. Lu, and W. C. Chew, "On the formulation of hybrid finite-element and boundary-integral methods for 3D scattering," IEEE Trans. Antennas Propagat., Vol. 46, No. 3, 303-311, March 1998.
doi:10.1109/8.662648        Google Scholar

37. Soudais, P., "Computation of the electromagnetic scattering from complex 3D objects by a hybrid FEM/BEM method," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 7, 871-886, July 1995.        Google Scholar

38. Ufimtsev, P. Y., Axially Symmetric Scattering of Acoustic Waves at Bodies of Revolution (Fundamentals of the Physical Theory of Diffraction), Wiley-IEEE Press, 2014.

39. Vesnik, M. V., "Analytical solution for electromagnetic diffraction on 2-D perfectly conducting scatterers of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 49, No. 12, 1638-1644, December 2001.
doi:10.1109/8.982441        Google Scholar

40. Wilton, D. R., "Review of current status and trends in the use of integral equations in computational electromagnetics," Electromagnetics, Vol. 12, 287-341, 1992.
doi:10.1080/02726349208908318        Google Scholar

41. Yang, C. X. and M. S. Tong, "Time-domain analysis of transient electromagnetic scattering from dielectric objects based on electric field integral equations," IEEE Trans. Antennas Propagat., Vol. 65, No. 2, 966-971, 2017.
doi:10.1109/TAP.2016.2632699        Google Scholar

42. Yla-Oijala, P., S. P. Kiminki, H. Walln, and A. Sihvola, "Uniform surface integral equation formulation for mixed impedance boundary conditions," IEEE Trans. Antennas Propagat., Vol. 63, No. 12, 5718-5726, 2015.
doi:10.1109/TAP.2015.2496100        Google Scholar

43. Yuan, X. C., "Three-dimensional electromagnetic scattering from inhomogeneous objects by the hybrid moment and finite element method," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 8, 1053-1058, August 1990.
doi:10.1109/22.57330        Google Scholar

44. Zhong, Y., M. Lambert, D. Lesselier, and X. Chen, "A new integral equation method to solve highly nonlinear inverse scattering problems," IEEE Trans. Antennas Propagat., Vol. 64, No. 5, 1788-1799, 2016.
doi:10.1109/TAP.2016.2535492        Google Scholar