Vol. 75
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-04-18
Application of Multiagent Systems to Three-Dimensional Positioning Problem in Indoor Environments Based on IEEE 802.11
By
Progress In Electromagnetics Research Letters, Vol. 75, 53-59, 2018
Abstract
In recent years, wireless indoor positioning systems have attracted significant research interest. However, maximizing system precision remains challenging, especially for three-dimensional (3D) estimates. In this paper, a novel hybrid approach to resolving this problem is proposed through the development of a multiagent system composed of a Bayesian network and a deep neural network for 3D indoor positioning. The proposed system is based on a combination of the multilateration and fingerprint methods in order to reduce the acquisition region of the received signal strength vectors. In addition, the relationship between the quality of the received signal and the noise level, which is influenced by the increase in the number of access points and the number of persons moving within the environment, is considered by the system. The proposed approach exhibits a better performance than other algorithms with an average positioning error of less than 0.9 m. This result represents a difference of more than 22 cm with respect to the most similar algorithm.
Citation
Hitalo Joseferson Batista Nascimento, Francisco Rodrigo P. Cavalcanti, Emanuel B. Rodrigues, and Antonio R. Paiva, "Application of Multiagent Systems to Three-Dimensional Positioning Problem in Indoor Environments Based on IEEE 802.11," Progress In Electromagnetics Research Letters, Vol. 75, 53-59, 2018.
doi:10.2528/PIERL18020209
References

1. Hui, L., D. Houshang, P. Banerjee, and L. Jing, "Survey of wireless indoor positioning techniques and systems," IEEE Transactions on System, Man, and Cybernetics --- Part C: Applications and Reviews, Vol. 37, No. 6, 45-61, November 2007.

2. Yassin, A., et al. "Recent advances in indoor localization: A survey on theoretical approaches and applications," IEEE Communications Surveys & Tutorials, Vol. 19, No. 2, 1327-1346, Second quarter 2017.
doi:10.1109/COMST.2016.2632427

3. Krishnamurthy, P., "Technologies for positioning in indoor areas," Indoor Wayfinding and Navigation, 35-51, CRC Press, Inc. Boca Raton, FL, USA, March 2015.

4. Liu, H., et al. "Push the limit of WiFi based localization for smartphones," Proc. 18th Annu. Int. Conf. Mobile Comput. Netw. (Mobicom’12), 206-316, August 2012.

5. Li, D., B. Zhang, and C. Li, "A feature-scaling-based k-nearest neighbor algorithm for indoor positioning systems," IEEE Internet of Things Journal, Vol. 3, No. 4, 590-597, August 2016.
doi:10.1109/JIOT.2015.2495229

6. Roos, T., P. Myllym¨aki, H. Tirri, P. Misikangas, and J. Sievanen, "A probabilistic approach to WLAN user location estimation," International Journal of Wireless Information Networks, Vol. 9, 45-61, 2002.

7. Dardari, D., P. Closas, and P. M. Djuri, "Indoor tracking: Theory, methods, and technologies," IEEE Transactions on Vehicular Technology, Vol. 64, No. 4, 1263-1278, April 2015.
doi:10.1109/TVT.2015.2403868

8. Schum, D. A., The Evidential Foundations of Probabilistic Reasoning, Northwestern University Press, 1994.

9. Duda, R. O., P. E. Hart, and D. G. Stork, Pattern Classification, 2nd Ed., Wiley, September 2001.

10. Friedman, N., D. Geiger, and M. Goldszmidt, "Bayesian network classifiers," Machine Learning, Vol. 29, 131-161, 1997.
doi:10.1023/A:1007465528199

11. Bengio, Y., "Learning deep architectures for AI," Foundations and Trends in Machine Learning, Vol. 2, No. 1, 1-127, 2009.
doi:10.1561/2200000006

12. Rumelhart, D. E., G. E. Hinton, and R. J. Williams, "Learning internal representations by error propagation," Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1, 318-362, Rumelhart, D. E. and McClelland, J. L., editors, Foundations, MIT Press, Cambridge, MA, USA, 1986.

13. Lloyd, S., "Least squares quantization in PCM," IEEE Transactions on Information Theory, Vol. 28, No. 2, 129-137, March 1982.
doi:10.1109/TIT.1982.1056489

14. Schulz, E., T. Breitsprecher, Y. Musayev, S. Tremmel, T. Hosenfeldt, S. Wartzack, and H. Meerkamm, "Interactions between amorphous carbon coatings and engine oil additives: Prediction of the friction behavior using optimized artificial neural networks," Advanced Ceramic Coatings and Materials for Extreme Environments II, D. Zhu, H. Lin, Y. Zhou, T. Hwang, M. Halbig, and S. Mathur (eds.), 2012.

15. David, K., A Brief Introduction to Neural Networks, 2007, available at http://www.dkriesel.com.

16. Bahl, P. and V. N. Padmanabhan, "RADAR: An in-building RF-based user location and tracking system," Proceedings --- IEEE INFOCOM, 775-784, March 2000.

17. COST 231 multi-wall digital mobile radio towards future generations systems, 176-179 Final Report-European Commission, 1999.

18. Han, S., C. Zhao, W. Meng, and C. Li, "Cosine similarity based fingerprinting algorithm in WLAN indoor positioning against device diversity," 2015 IEEE International Conference on Communications (ICC), 2710-2714, London, 2015.

19. Khalajmehrabadi, A., N. Gatsis, and D. Akopian, "Structured group sparsity: A novel indoor WLAN localization, outlier detection, and radio map interpolation scheme," IEEE Transactions on Vehicular Technology, Vol. 66, No. 7, 6498-6510, July 2017.
doi:10.1109/TVT.2016.2631980

20. Huang, C. C. and H. N. Manh, "RSS-based indoor positioning based on multi-dimensional kernel modeling and weighted average tracking," IEEE Sensors Journal, Vol. 16, No. 9, 3231-3245, May 1, 2016.
doi:10.1109/JSEN.2016.2524537