1. Iijima, S., "Helical microtabules of graphitic carbon," Nature, Vol. 354, 56-58, 1991.
doi:10.1038/354056a0 Google Scholar
2. Meyyappan, M., Carbon Nanoyubes: Sceince and Applications, CRC Press, 2005.
3. Poole, C. P. and F. J. Owens, Introduction to Nanotechnology, Wiley-Interscience, 2003.
4. Smalley, R. E., M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Springer, 2001.
5. Kempa, K., et al. "Photonic crystals based on periodic arrays of aligned carbon nanotubes," Nano Letters, Vol. 3, No. 1, 13-18, 2003.
doi:10.1021/nl0258271 Google Scholar
6. Lidorikis, E. and A. C. Ferrari, "Photonics with multiwall carbon nanotube arrays," ACS Nano, Vol. 3, No. 5, 1238-1248, 2009.
doi:10.1021/nn900123a Google Scholar
7. Butt, H., Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Negative index photonic crystal lenses based on carbon nanotube arrays," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 10, No. 4, 499-505, October 2012.
doi:10.1016/j.photonics.2012.04.003 Google Scholar
8. Slepyan, G. Y., et al. "Electronic and electromagnetic properties of nanotubes," Phys. Rev. B, Vol. 57, No. 16, 9485-9497, April 1998.
doi:10.1103/PhysRevB.57.9485 Google Scholar
9. Slepyan, G. Y., et al. "Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions, and surface wave propagation," Phys. Rev. B, Vol. 60, No. 24, 17136-17149, December 1999.
doi:10.1103/PhysRevB.60.17136 Google Scholar
10. Slepyan, G. Ya., M. V. Shuba, and S. A. Maksimenko, "Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas," Phys. Rev. B, Vol. 73, 195416-19526, May 2006.
doi:10.1103/PhysRevB.73.195416 Google Scholar
11. Mikki, S. M. and A. Kishk, "Theory of optical scattering by carbon nanotubes," Microwave & Optical Technology Letters, Vol. 49, No. 10, 2360-2364, October 2007.
doi:10.1002/mop.22768 Google Scholar
12. Mikki, S. M. and A. A. Kishk, "Derivation of the dielectric tensor of carbon nanotubes using lattice dynamics formalism," Progress In Electromagnetics Research B, Vol. 9, 1-26, 2008.
doi:10.2528/PIERB08082301 Google Scholar
13. Mikki, S. and A. Kishk, "Electromagnetic scattering by multi-wall carbon nanotube using effective-boundary condition approach," IEEE Antennas & Propagation/URSI International Symposium, 2008. Google Scholar
14. Mikki, S. M. and A. A. Kishk, "Electromagnetic scattering by multi-wall carbon nanotubes using effective-boundary condition approach: Theory and applications," Progress In Electromagnetics Research B, Vol. 17, 49-67, 2009.
doi:10.2528/PIERB09040605 Google Scholar
15. Mikki, S.M. and A. A. Kishk, "A symmetry-based formalism for the electrodynamics of nanotubes," Progress In Electromagnetics Research, Vol. 86, 111-134, 2008.
doi:10.2528/PIER08081704 Google Scholar
16. Mikki, S. M. and A. A. Kishk, "Various homogenization formalisms for carbon nanotube composites," International URSI Meeting, Ottawa, July 21-26, 2007. Google Scholar
17. Mikki, S. M. and A. Kishk, "Mean-field electrodynamic theory of aligned carbon nanotube composites," IEEE Trans. Antennas Progat., Vol. 57, No. 5, 1412-1419, May 2009.
doi:10.1109/TAP.2009.2016687 Google Scholar
18. Chew, W. C., Waves and Fields in Inhomogeneous Media, re-print Ed., IEEE Press, 1999.
doi:10.1109/9780470547052
19. Kushta, K. and K. Yausumoto, "Electromagnetic scattering from periodic arrays of two circular cylinders per unit cell," Progress In Electromagnetics Research, Vol. 29, 69-85, 2000.
doi:10.2528/PIER99103101 Google Scholar
20. Yausumoto, K. and K. Yoshitomi, "Efficient calculation of lattice sums for free-space periodic Green’s functions," IEEE Trans. Antennas & Propagation, Vol. 47, 1050-1055, June 1999.
doi:10.1109/8.777130 Google Scholar
21. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1965.
22. Collins, P. G., "Defects and disorder in carbon nanotubes," Oxford Handbook of Nanoscience and Technology: Frontiers and Advances, A. V. Narlikar, & Y. Y. Fu, (Eds.), Oxford Univ. Press, Oxford, 2009. Google Scholar
23. Nho, H. W., Y. Kalegowda, H.-J. Shin, and T. H. Yoon, "Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy," Scientific Reports, Vol. 6, 24488, 2016.
doi:10.1038/srep24488 Google Scholar
24. Liew, S. F., S. Knitter, W. Xiong, and H. Cao, "Photonic crystals with topological defects," Phys. Rev. A, Vol. 91, 023811, February 6, 2015. Google Scholar