Vol. 75
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-04-18
Design of Compact Bandpass Filters Using Sixteenth Mode and Thirty-Second Mode SIW Cavities
By
Progress In Electromagnetics Research Letters, Vol. 75, 61-66, 2018
Abstract
This paper presents two novel bandpass filters using sixteenth mode substrate integrated waveguide (SMSIW) and thirty-second mode SIW (TMSIW) cavities, respectively. The overall size of SMSIW and TMSIW cavities can be reduced by a factor of 15/16 and 31/32 in comparison to the filters designed in the conventional SIW resonator, while keeping almost the same resonant frequency. Based on SMSIW cavity, a first-order filter with the center frequency of 2.45GHz and a transmission zero (TZ) located at the upper-stopband is proposed. The second-order TMSIW cavity filter exhibits one TZ at the lower-stopband and two TZs at the upper-stopband, and it has a better performance of the passband than the former with the same size and center frequency. It also has a wider upper-stopband with suppression of an unwanted harmonic at 7.6GHz. Two intersecting rectangular slots are etched between the two cavities with a smaller angle between them of 30 degrees. The whole size of the filter is 24.2 mm×29.1 mm×0.508 mm. The filters are fabricated in SIW technology, and the frequency response shows good agreement between simulated and measured results.
Citation
Ya-Na Yang, Guo Hui Li, Li Sun, Wei Yang, and Xuexia Yang, "Design of Compact Bandpass Filters Using Sixteenth Mode and Thirty-Second Mode SIW Cavities," Progress In Electromagnetics Research Letters, Vol. 75, 61-66, 2018.
doi:10.2528/PIERL18021002
References

1. You, C. J., Z. N. Chen, X. W. Zhu, and K. Gong, "Single-layered SIWpost-loaded electric couplingenhanced structure and its filter applications," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, 125-130, 2013.
doi:10.1109/TMTT.2012.2228667

2. Kong, F. F., W. Q. Ding, and Z. C. Hao, "A low cost W-band multilayer SIW filter," IEEE ICMMT, Vol. 1, 64-66, 2016.

3. Hao, Z. C., W. Q. Ding, and W. Hong, "Developing low-cost W-band SIW bandpass filters using the commercially available Printed-Circuit-Board technology," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 6, 1775-1786, 2016.
doi:10.1109/TMTT.2016.2553029

4. Wu, L. S., X. L. Zhou, W. Y. Yin, C. T. Liu, L. Zhou, J. F. Mao, and H. L. Peng, "A new type of periodically loaded half-mode substrate integrated waveguide and its applications," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 4, 882-893, 2010.
doi:10.1109/TMTT.2010.2042832

5. Moscato, S., C. Tomassoni, M. Bozzi, and L. Perregrini, "Quarter-Mode cavity filters in substrate integrated waveguide technology," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 8, 2538-2547, 2016.
doi:10.1109/TMTT.2016.2577690

6. Li, P., H. Chu, and R. S. Chen, "Design of compact bandpass filters using quarter-mode and eighth-mode SIW cavities," IEEE Trans. Compon. Packag. Technol., Vol. 7, No. 6, 956-963, 2017.
doi:10.1109/TCPMT.2017.2677958

7. Azad, A. R. and A. Mohan, "Sixteenth-mode substrate integrated waveguide bandpass filter loaded with complementary split-ring resonator," Electron. Lett., Vol. 53, No. 8, 546-547, 2017.
doi:10.1049/el.2016.3620

8. Harrington, R. F., Time-Harmonic Electromagnetic Filed, McGraw-Hill, 1961.

9. Moscato, S., N. Delmonte, L. Silvestri, M. Bozzi, and L. Perregrini, "Half-mode versus folded SIW filters: Modeling and design," IEEE MTT-S Int. Conf. on Numerical Electromagnetic and Multiphysics Modeling and Optimization, 1-3, 2015.

10. Zhang, X. J., Y. X. Guo, and F. Wang, "Minimization of wideband LTCC bandpass filter using QMSIW and EMSIW cavities," IEEE MTT-S Int. Microw. Workshop Series on Advanced Materials and Processes for RF and THz Applications, 1-2, 2015.