Vol. 75
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-04-11
An Omnidirectional Printed Collinear Microstrip Antenna Array
By
Progress In Electromagnetics Research Letters, Vol. 75, 33-38, 2018
Abstract
An omnidirectional antenna array is proposed in this paper. The antenna unit of the array is composed of ten radiation patches and the associated microstrip feeding network. Some gaps between top and back patches are introduced in the antenna to improve matching, ease of feeding and enhance the bandwidth. Microwave experiments and numerical simulations are performed to demonstrate antenna functionalities. The fabricated antenna exhibits a bandwidth of 14% (1-1.15 GHz) for VSWR ≤ 1.5, with a gain around 6 dBi. The results are valuable for the design and evaluation of omnidirectional planar antenna arrays with good impedance matching, which are important for airborne and navigation applications.
Citation
Davoud Zarifi, and Ali Ahmadi, "An Omnidirectional Printed Collinear Microstrip Antenna Array," Progress In Electromagnetics Research Letters, Vol. 75, 33-38, 2018.
doi:10.2528/PIERL18022504
References

1. Judasz, T. J. and B. B. Balsley, "Improved theoretical and experimental models for the coaxial colinear antenna," IEEE Transactions on Antennas and Propagation, Vol. 37, 289-296, 1989.
doi:10.1109/8.18724

2. Sakitani, A., "Analysis of coaxial collinear antenna-recurrence formula of voltages and admittances at connections ," IEEE Transactions on Antennas and Propagation, Vol. 39, 15-20, 1991.
doi:10.1109/8.64429

3. Bancroft, R. and B. Bateman, "An omnidirectional planar microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 3151-3154, 2004.
doi:10.1109/TAP.2004.832338

4. Bancroft, R. and B. Bateman, "An omnidirectional planar microstrip antenna with low sidelobes," Microwave and Optical Technology Letters, Vol. 42, 68-69, Jul. 2004.

5. Wong, K. L., F. R. Hsiao, and T. W. Chiou, "Omnidirectional planar dipole array antenna," IEEE Transactions on Antennas and Propagation, Vol. 52, 624-628, Feb. 2004.
doi:10.1109/TAP.2004.823897

6. Liu, Y., T. Tseng, and K. Wong, "High gain printed dipole antenna," Microwave and Optical Technology Letter, Vol. 46, No. 4, 214-218, Aug. 2005.
doi:10.1002/mop.20948

7. Wong, K. L., T. C. Tseng, F. R. Hsiao, and T. W. Chiu, "High-gain omnidirectional printed collinear antenna," Microwave and Optical Technology Letters, Vol. 44, 348-351, Feb. 2005.
doi:10.1002/mop.20631

8. Bancroft, R., "Design parameters of an omnidirectional planar microstrip antenna," Microwave and Optical Technology Letters, Vol. 47, No. 5, 414-418, Dec. 2005.
doi:10.1002/mop.21187

9. Wei, K., Z. Zhang, and Z. Feng, "Design of a dualband omnidirectional planar microstrip antenna array," Progress In Electromagnetics Research, Vol. 126, 101-120, 2012.
doi:10.2528/PIER11112101

10. Esmaeli, S. H., M. Khalaj-Amirhosseini, and S. H. Sedighy, "Three optimized omnidirectional microstrip antennas (oma) for wlan applications," Progress In Electromagnetics Research Letters, Vol. 55, 39-43, 2015.
doi:10.2528/PIERL15061105

11. Yang, Y.-L., F.-S. Zhang, H. Zhang, and H.-Y. Zhang, "Enhanced bandwidth of a horizontally polarized omnidirectional printed antenna array based on dual-dipole structure," Progress In Electromagnetics Research C, Vol. 78, 105-113, 2017.
doi:10.2528/PIERC17072703

12. Tang, J., L. Fang, and H. Cheng, "A low sidelobe and high gain omnidirectional COCO antenna array," 3rd Asia-Pacific Conference on Antennas and Propagation (APCAP), Jul. 2014.