Vol. 75
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-05-02
The Effect of the Discharge Chamber Structure on the Performance of a 5 cm -Diameter ECR Ion Thruster
By
Progress In Electromagnetics Research Letters, Vol. 75, 91-96, 2018
Abstract
Design and experimental optimization of a 5 cm-diameter electron cyclotron resonance (ECR) Ion Thruster was carried out. The experimental results with the shorten discharge chamber demonstrated that its maximum efficiency, specific impulse, and thrust were 38%, 4300 s, 2.3 mN with the power of 130 W, respectively. The beam current was increased with the increment of the propellant flow rate and screen grid voltage. In addition, the performance of the thruster was associated with the distance of the antenna and screen grid. However, the optimum distance depended on the input microwave power which was about 20 W.
Citation
Yujun Ke, Xinfeng Sun, Yong Zhao, and Xuekang Chen, "The Effect of the Discharge Chamber Structure on the Performance of a 5 cm -Diameter ECR Ion Thruster," Progress In Electromagnetics Research Letters, Vol. 75, 91-96, 2018.
doi:10.2528/PIERL18030703
References

1. Kuninaka, H. and S. Satori, "Development and demonstration of a cathodeless electron cyclotron resonance ion thruster," Journal of Propulsion and Power, Vol. 14, No. 6, 1022-1026, 2015.
doi:10.2514/2.5369

2. Ushio, K., Y. Toyoda, Y. Naoji, T. Morita, and H. Nakashima, "Development of novel miniature microwave discharge thruster," IEPC, Vol. 245, 2015.

3. Yuichi, N., T. Daiki, K. Hiroyuki, and K. Komurasaki, "Performance Dependence on microwave frequency and discharge chamber geometry of the water ion thruster," IEPC, Vol. 454, 2017.

4. Nakamura, K. and K. Hiroyuki, "Three-Dimensional particle simulations of discharge characteristics for a miniature microwave discharge ion thruster using water as propellant," IEPC, Vol. 241, 2017.

5. Jin, Y. Z., J. Yang, and M. J. Tang, "Diagnosing the fine structure of electron energy, within the ECRIT ion source," Plasma Sci. Technol., Vol. 18, No. 7, 744-750, 2016.
doi:10.1088/1009-0630/18/7/08

6. Correyero, S. and E. Ahedo, "Measurement of anisotropic plasma properties along the magnetic nozzle expansion of an electron cyclotron resonance thruster," IEPC, Vol. 347, 2017.

7. Koizumi, H. and H. Kuninaka, "Low power micro ion engine using microwave discharge," AIAA, Vol. 4531, 2008.

8. Koizumi, H. and H. Kuninaka, "Low power micro ion engine using microwave discharge," AIAA, Vol. 4531, 2008.

9. Izumi, T., H. Koizumi, and H. Kuninaka, "Performance of miniature microwave discharge ion thruster for drag-free control," AIAA, Vol. 4022, 2012.

10. Nishiyama, I., T. Tsukizaki, and H. Kuninaka, "Experimental study for enhancement thrust force of the ECR ion thruster μ10," AIAA, Vol. 3913, 2014.

11. Yamamoto, N., K. Tomita, N. Yamasaki, T. Tsuru, T. Ezaki, Y. Kotani, K. Uchino, and H. Nakashima, "Measurements of electron density and temperature in a miniature microwave discharge ion thruster using laser Thomson scattering technique," Plasma Sources Sci. Technol., Vol. 19, 045009, 2010.
doi:10.1088/0963-0252/19/4/045009

12. Lubey, D., S. Bilen, M. Micci, and P. Taunay, "Design of the miniature microwave-frequency ion thruster," IEPC, Vol. 164, 2011.

13. Satori, S., A. Nagata, H. Okamoto, T. Sugiki, and Y. Aoki, "New electrostatic thruster for small satellite application," AIAA, Vol. 3275, 2000.

14. Yang, J., C. Wang, Y. Jin, L. Li, D. Tao, and Y. Yang, "Underlying strain-induced growth of the self-assembled Ge quantum-dots prepared by ion beam sputtering deposition," Acta Phys. Sin., Vol. 61, 016804, 2012.

15. Sun, A., G. Mao, J. Yang, G. Xia, and M. Chen, "Particle simulation of three-grid ECR ion thruster optics and erosion prediction," Plasma Sci. Technol., Vol. 12, No. 2, 240-247, 2010.
doi:10.1088/1009-0630/12/2/21

16. Zhang, H., P. Wang, and J. Qiu, "Study on miniaturized electron cyclotron resonant microwave ion thruster," Acta Astronautica (in Chinese), Vol. 28, 138-142, 2007.

17. Ke, Y., X. Sun, X. Chen, L. Tian, T. Zhang, and M. Zheng, "Analysis of the primary experimental results on a 5 cm diameter ECR ion thruster," Plasma Sci. Technol., Vol. 19, 095503, 2017.
doi:10.1088/2058-6272/aa6d4c

18. Boswell, R. and F. Chen, "Helicons-the early years," IEEE Trans. Plasma Sci., Vol. 25, No. 6, 1229-1244, 1997.
doi:10.1109/27.650898

19. Takao, Y., K. Ono, K. Takahashi, and Y. Setsuhara, "Microwave-sustained miniature plasmas for an ultra small thruster," Thin Solid Films, 506-592, 2006.