1. Kuninaka, H. and S. Satori, "Development and demonstration of a cathodeless electron cyclotron resonance ion thruster," Journal of Propulsion and Power, Vol. 14, No. 6, 1022-1026, 2015.
doi:10.2514/2.5369 Google Scholar
2. Ushio, K., Y. Toyoda, Y. Naoji, T. Morita, and H. Nakashima, "Development of novel miniature microwave discharge thruster," IEPC, Vol. 245, 2015. Google Scholar
3. Yuichi, N., T. Daiki, K. Hiroyuki, and K. Komurasaki, "Performance Dependence on microwave frequency and discharge chamber geometry of the water ion thruster," IEPC, Vol. 454, 2017. Google Scholar
4. Nakamura, K. and K. Hiroyuki, "Three-Dimensional particle simulations of discharge characteristics for a miniature microwave discharge ion thruster using water as propellant," IEPC, Vol. 241, 2017. Google Scholar
5. Jin, Y. Z., J. Yang, and M. J. Tang, "Diagnosing the fine structure of electron energy, within the ECRIT ion source," Plasma Sci. Technol., Vol. 18, No. 7, 744-750, 2016.
doi:10.1088/1009-0630/18/7/08 Google Scholar
6. Correyero, S. and E. Ahedo, "Measurement of anisotropic plasma properties along the magnetic nozzle expansion of an electron cyclotron resonance thruster," IEPC, Vol. 347, 2017. Google Scholar
7. Koizumi, H. and H. Kuninaka, "Low power micro ion engine using microwave discharge," AIAA, Vol. 4531, 2008. Google Scholar
8. Koizumi, H. and H. Kuninaka, "Low power micro ion engine using microwave discharge," AIAA, Vol. 4531, 2008. Google Scholar
9. Izumi, T., H. Koizumi, and H. Kuninaka, "Performance of miniature microwave discharge ion thruster for drag-free control," AIAA, Vol. 4022, 2012. Google Scholar
10. Nishiyama, I., T. Tsukizaki, and H. Kuninaka, "Experimental study for enhancement thrust force of the ECR ion thruster μ10," AIAA, Vol. 3913, 2014. Google Scholar
11. Yamamoto, N., K. Tomita, N. Yamasaki, T. Tsuru, T. Ezaki, Y. Kotani, K. Uchino, and H. Nakashima, "Measurements of electron density and temperature in a miniature microwave discharge ion thruster using laser Thomson scattering technique," Plasma Sources Sci. Technol., Vol. 19, 045009, 2010.
doi:10.1088/0963-0252/19/4/045009 Google Scholar
12. Lubey, D., S. Bilen, M. Micci, and P. Taunay, "Design of the miniature microwave-frequency ion thruster," IEPC, Vol. 164, 2011. Google Scholar
13. Satori, S., A. Nagata, H. Okamoto, T. Sugiki, and Y. Aoki, "New electrostatic thruster for small satellite application," AIAA, Vol. 3275, 2000. Google Scholar
14. Yang, J., C. Wang, Y. Jin, L. Li, D. Tao, and Y. Yang, "Underlying strain-induced growth of the self-assembled Ge quantum-dots prepared by ion beam sputtering deposition," Acta Phys. Sin., Vol. 61, 016804, 2012. Google Scholar
15. Sun, A., G. Mao, J. Yang, G. Xia, and M. Chen, "Particle simulation of three-grid ECR ion thruster optics and erosion prediction," Plasma Sci. Technol., Vol. 12, No. 2, 240-247, 2010.
doi:10.1088/1009-0630/12/2/21 Google Scholar
16. Zhang, H., P. Wang, and J. Qiu, "Study on miniaturized electron cyclotron resonant microwave ion thruster," Acta Astronautica (in Chinese), Vol. 28, 138-142, 2007. Google Scholar
17. Ke, Y., X. Sun, X. Chen, L. Tian, T. Zhang, and M. Zheng, "Analysis of the primary experimental results on a 5 cm diameter ECR ion thruster," Plasma Sci. Technol., Vol. 19, 095503, 2017.
doi:10.1088/2058-6272/aa6d4c Google Scholar
18. Boswell, R. and F. Chen, "Helicons-the early years," IEEE Trans. Plasma Sci., Vol. 25, No. 6, 1229-1244, 1997.
doi:10.1109/27.650898 Google Scholar
19. Takao, Y., K. Ono, K. Takahashi, and Y. Setsuhara, "Microwave-sustained miniature plasmas for an ultra small thruster," Thin Solid Films, 506-592, 2006. Google Scholar