Vol. 77
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-06-12
Half-Mode SIW BPF Loaded with S-Shaped Complementary Spiral Resonators
By
Progress In Electromagnetics Research Letters, Vol. 77, 13-18, 2018
Abstract
A compact wideband bandpass filter (BPF) based on half-mode substrate integrated waveguide (HMSIW) is proposed in this paper. The proposed BPF is achieved by etching a couple of S-shaped complementary spiral resonators (S-CSRs) on the top layer of HMSIW cavity to achieve a wide passband as well as generate two transmission zeros in the vicinity of the passband respectively to improve the selectivity. In addition, compared with a conventional CSRs-loaded HMSIW structure, the proposed S-CSRs-loaded HMSIW makes the overall size of the filter largely reduced with the same electrical length. Among the HMSIW structures ever reported, the proposed S-CSRs are the first time to be introduced into HMSIW. To validate its practicability, a compact wideband HMSIW BPF loaded with S-SCRs has been designed and implemented through the PCB process. The measured and simulated S-parameters of the filter are presented to show the proposed filter's predicted performance, and good agreements is obtained between them. This result demonstrates that the newly proposed HMSIW structure loaded with S-CSRs is an excellent candidate for compact filters.
Citation
Feng Wei, Hao Jie Yue, Jing-Pan Song, Hong Yi Kang, and Bin Li, "Half-Mode SIW BPF Loaded with S-Shaped Complementary Spiral Resonators," Progress In Electromagnetics Research Letters, Vol. 77, 13-18, 2018.
doi:10.2528/PIERL18032604
References

1. Senior, D. E., A. Rahimi, P. Jao, and Y. K. Yoon, "A surface micromachined broadband millimeter-wave filter using quarter-mode substrate integrated waveguide loaded with complementary split ring resonator," IEEE MTT-S International Microwave Symposium (IMS 2014), 1-4, 2014.

2. Deslandes, D. and K. Wu, "Single-substrate integration technique for planar circuits and waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 51, 593-596, 2003.
doi:10.1109/TMTT.2002.807820

3. Zhang, Q.-L., W. Yin, S. He, et al. "Compact substrate integrated waveguide (SIW) bandpass filter with complementary split-ring resonators (CSRRs)," IEEE Microw. Wireless Compon. Lett., Vol. 20, 426-428, 2010.
doi:10.1109/LMWC.2010.2049258

4. Chen, X.-P. and K. Wu, "Substrate integrated waveguide cross-coupled filter with negative coupling structure," IEEE Trans. Microw. Theory Tech., Vol. 56, 142-149, 2008.
doi:10.1109/TMTT.2007.912222

5. Huang, L. W. and H. Cha, "Novel half-mode substrate integrated waveguide filters with modified broadside-coupled split ring resonators," IEEE 16th International Conference on Communication Technology (ICCT), 548-552, 2015.
doi:10.1109/ICCT.2015.7399898

6. Cross, L. W., M. J. Almalkawi, and V. K. Devabhaktuni, "Half mode substrate-integrated waveguide-loaded evanescent-mode bandpass filter," International Journal of Rf & Microwave Computer-aided Engineering, Vol. 23, No. 2, 172-177, 2013.

7. Dong, Y. D., T. Yang, and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 57, 2211-2223, 2009.
doi:10.1109/TMTT.2009.2027156

8. Huang, Y. M., Z. H. Shao, W. Jiang, T. Huang, and G. A. Wang, "Half-mode substrate integrated waveguide bandpass filter loaded with horizontal-asymmetrical stepped-impedance complementary split-ring resonators," Electron. Lett., Vol. 52, 1034-1036, 2016.
doi:10.1049/el.2016.0372

9. Camdoo, R., S. M. Lau, and H. T. Su, "Compact cross-coupled half-mode substrate integrated waveguide bandpass filter," IEEE Asia Pacific Microwave Conference, 706-709, IEEE, 2017.

10. Horestani, A. K., M. Duran-Sindreu, J. Naqui, C. Fumeaux, and F. Martin, "Coplanar waveguides loaded with S-shaped split-ring resonators: Modeling and application to compact microwave filters," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1349-1352, 2014.
doi:10.1109/LAWP.2014.2337913