Vol. 76
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-05-21
Equivalent Circuit Microwave Modeling of Graphene-Loaded Thick Films Using S-Parameters
By
Progress In Electromagnetics Research Letters, Vol. 76, 33-38, 2018
Abstract
Graphene, a one-atom thick layer of carbon atoms arranged to form a honeycomb lattice exhibits intriguing mechanical, thermal and electrical properties, which make it attractive for bio- and chemical sensors as well as flexible electronics applications. In this paper, graphene films with different amounts of graphene loading (weight fraction 12.5% and 25%) deposited by screen printing technique are characterized in the microwave frequency range. By fitting the measured scattering parameters of graphene-loaded microstrip lines with Advanced Design System (ADS) circuit simulations, a simple equivalent lumped circuit model of the film is obtained. The proposed equivalent lumped circuit model presented in this paper proves suitable as an initial step towards the full-wave electromagnetic modeling and analysis of graphene loaded microwave structures intended for sensing and tuning applications.
Citation
Ololade Sanusi, Patrizia Savi, Simone Quaranta, Ahmad Bayat, and Langis Roy, "Equivalent Circuit Microwave Modeling of Graphene-Loaded Thick Films Using S-Parameters," Progress In Electromagnetics Research Letters, Vol. 76, 33-38, 2018.
doi:10.2528/PIERL18040903
References

1. Novoselov, K., A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, "Electric field effect in atomically thin carbon films," Science, Vol. 306, 666-669, 2004.
doi:10.1126/science.1102896

2. Geim, A., "Graphene: Status and prospects," Science, Vol. 324, 1530-1534, 2009.
doi:10.1126/science.1158877

3. Rafiee, M. A., J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, "Enhanced mechanical properties of nanocomposites at low graphene content," ACS Nano, Vol. 3, 3884-3890, 2009.
doi:10.1021/nn9010472

4. Hyun, W. J., E. B. Secor, M. C. Hersam, C. D. Frisbie, and L. F. Francis, "High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics," Advanced Materials, Vol. 27, 109-1115, 2015.
doi:10.1002/adma.201404133

5. Zinenko, T. L., A. Matsushima, and A. I. Nosich, "Surface-plasmon, grating-mode and slab-mode resonances in THz wave scattering by a graphene strip grating embedded into a dielectric slab," IEEE J. Sel. Topics Quant. Electron., Vol. 23, No. 4, art. No. 4601809, 2017.

6. Bonaccorso, F., Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene photonics and optoelectronics," Nat. Photon., Vol. 4, 611-622, 2010.
doi:10.1038/nphoton.2010.186

7. Hill, E. W., A. Vijayaragahvan, and K. Novoselov, "Graphene sensors," IEEE Sensors Journal, Vol. 11, 3161-3170, 2011.
doi:10.1109/JSEN.2011.2167608

8. Zhu, Z., L. G.-Gancedo, A. J. Flewitt, H. Xie, F. Moussy, and W. I. Milne, "A critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene," Sensors, Vol. 12, 5996-6022, 2012.
doi:10.3390/s120505996

9. Leng, X., W. Li, D. Luo, and F. Wang, "Differential structure with graphene oxide for both humidity and temperature sensing," IEEE Sensor Journal, Vol. 17, 4357-4364, 2017.
doi:10.1109/JSEN.2017.2712717

10. Bozzi, M., L. Pierantoni, and S. Bellucci, "Applications of Graphene at microwave frequency," Radioengineering, Vol. 24, 661-669, 2015.
doi:10.13164/re.2015.0661

11. Hotopan, G., S. Ver Hoeye, C. Vazquez, R. Camblor, M. Fernandez, Las F. Heras, P. Alvarez, and R. Menendez, "Millimeter wave microstrip mixer based on graphene," Progress In Electromagnetics Research, Vol. 118, 57-69, 2011.
doi:10.2528/PIER11051709

12. Hotopan, G., S. Ver Hoeye, C. Vazquez, A. Adaring, R. Camblor, M. Fernandez, and F. R. Las Heras, "Millimeter wave subharmonic mixer implementation using graphene film coating," Progress In Electromagnetics Research, Vol. 140, 781-794, 2013.
doi:10.2528/PIER13042408

13. Yasir, M., P. Savi, S. Bistarelli, A. Cataldo, M. Bozzi, L. Perregrini, and S. Bellucci, "A planar antenna with voltage-controlled frequency tuning based on few-layer graphene," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2380-2383, 2017.
doi:10.1109/LAWP.2017.2718668

14. Haider, N., N. D. Caratelli, and A. G. Yarovoy, "Recent developments in reconfigurable and multiband antenna technology," Nanomaterials and Nanotechnology, Vol. 869170, 1-9, 2016.

15. Hanson, G. W., "Dyadic Green’s functions for an anisotropic, non-local model of biased graphene," IEEE Transactions on antennas and propagation, Vol. 56, No. 3, 747-757, March 2008.
doi:10.1109/TAP.2008.917005

16. Donelli, M. and G. Oliveri, "Design of tunable graphene-based antenna arrays for microwave applications," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science meeeting, 908-909, Memphis, Tennessee, USA, 2014.

17. Thomas, P., N. K. Pushkaran, and C. K. Aanandan, "Preparation and microwave characterization of novel polyaniline-graphene composite for antenna applications," 2017 Progress In Electromagnetics Research Symposium --- Fall (PIERS --- FALL), 1239-1244, Singapore, Nov. 19-22, 2017.

18. Liang, M., M. Tuo, S. Li, Q. Zhu, and H. Xin, "Graphene conductivity characterization at microwave and THz frequency," 8th European Conference on Antennas and Propagation (EuCAP 2014), 489-491, The Hague, 2014.
doi:10.1109/EuCAP.2014.6901798

19. Pierantoni, L., M. Dragoman, and D. Mencarelli, "Analysis of a microwave graphene-based patch antenna," 2013 European Microwave Conference, 381-383, Nuremberg, 2013.

20. Savi, P., K. Naishadham, S. Quaranta, M. Giorcelli, and A. Bayat, "Microwave characterization of Graphene films for sensor applications," IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1-5, Torino, Italy, May 22-25, 2017.

21. Savi, P., K. Naishadham, A. Bayat, M. Giorcelli, and S. Quaranta, "Multi-walled carbon nanotube thin film loading for tuning microstrip patch antennas," European Conference on Antennas and Propagation (EuCAP), 1-3, Davos, Switzerland, Apr. 10-15, 2016.

22. Torgvonikov, I. G., "Dielectric properties of wood and wood-based materials," Wood Science, Vol. 35, No. 3, 135-143, Springer, 1993.

23. Pierantoni, L., D. Mencarelli, M. Bozzi, R. Moro, and S. Bellucci, "Graphene-based electronically tuneable microstrip attenuator," Nanomaterials and Nanotechnology, Vol. 4, No. 18, 1-6, 2014.