Vol. 81
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-06-25
Numerical Analysis of Radar Response to Snow Using Multiple Backscattering Measurements for Snow Depth Retrieval
By
Progress In Electromagnetics Research B, Vol. 81, 63-80, 2018
Abstract
Study of snow is an important domain of research in hydrology and meteorology. It has been demonstrated that snow physical properties can be retrieved using active microwave sensors. This requires an understanding of the interaction between electromagnetic (EM) waves with natural media. The objective of this work is two-fold: to study numerically all physical forward models concerning the EM wave interaction with snow and to develop an inverse scattering algorithm to estimate snow depth based on radar backscattering measurements at different frequencies and incidence angles. For the first part, the goal is to solve the scattering calculations by means of the well-known electromagnetic simulator Ansoft High Frequency Structure Simulator (HFSS). The numerical simulations include: the effective permittivity of snow, surface scattering phenomena in layered homogeneous media (air-snow-ground) with rough interfaces, and volume scattering phenomena when treating snow as a dense random media. For the second part, the study is extended to develop a retrieval method to estimate snow thickness over ground from backscattering observations at L- and X-band using multiple incidence angles. The return signal from snow over ground is influenced by: surface scattering, volume scattering, and the noise effects of the radar system. So, the backscattering coefficient from the medium is modelled statistically by including a white Gaussian noise into the simulation. This inversion algorithm estimates first the snow density using L-band co-polarized backscattering coefficient at normal incidence and then retrieves the snow depth from X-band co-polarized backscattering coefficients using dual incidence angles.
Citation
Fatima Mazeh, Bilal Hammoud, Hussam Ayad, Fabien Ndagijimana, Ghaleb Faour, Majida Fadlallah, and Jalal Jomaah, "Numerical Analysis of Radar Response to Snow Using Multiple Backscattering Measurements for Snow Depth Retrieval," Progress In Electromagnetics Research B, Vol. 81, 63-80, 2018.
doi:10.2528/PIERB18042803
References

1. Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, "Potential impacts of a warming climate on water availability in snow-dominated region," Nature, Vol. 438, No. 7066, 303-309, 2005.
doi:10.1038/nature04141        Google Scholar

2. Cui, Y., C. Xiong, J. Lemmetyinen, J. Shi, L. Jiang, B. Peng, H. Li, T. Zhao, D. Ji, and A. T. Hu, "Estimating Snow Water Equivalent with backscattering at X and Ku band based on absorption loss," Remote Sensing, Vol. 8, No. 6, 505, 2016.
doi:10.3390/rs8060505        Google Scholar

3. Shi, J. and A. J. Dozier, "Estimation of snow water equivalence using SIR-C/X-SAR. I. Inferring snow density and subsurface properties," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 6, 2465-2474, 2000.
doi:10.1109/36.885195        Google Scholar

4. Ulaby, F. T., D. G. Long, W. J. Blackwell, C. Elachi, A. K. Fung, C. Ruf, K. Sarabandi, H. A. Zebker, and J. Van Zyl, Microwave Radar and Radiometric Remote Sensing, Vol. 4, University of Michigan Press Ann Arbor, 2014.

5. Rott, H., S. H. Yueh, D. W. Cline, C. Duguay, R. Essery, C. Haas, and T. Nagler, "Cold regions hydrology high-resolution observatory for snow and cold land processes," Proceedings of the IEEE, Vol. 98, No. 5, 752-765, 2010.
doi:10.1109/JPROC.2009.2038947        Google Scholar

6. Shi, J., "Snow water equivalence retrieval using X and Ku band dual-polarization radar," International Conference on Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006, 2183-2185, IEEE, July 2006.        Google Scholar

7. http://www.ansoft.com/produxts/hf/hfss/.

8. Oh, Y., K. Sarabandi, and F. T. Ulaby, "An empirical model and an inversion technique for radar scattering from bare soil surfaces," IEEE transactions on Geoscience and Remote Sensing, Vol. 30, No. 2, 370-381, 1992.
doi:10.1109/36.134086        Google Scholar

9. Dubois, P. C., J. Van Zyl, and T. Engman, "Measuring soil moisture with imaging radars," IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 4, 915-926, 1995.
doi:10.1109/36.406677        Google Scholar

10. Ghafouri, A., J. Amini, M. Dehmollaian, and M. A. Kavoosi, "Better estimated iem input parameters using random fractal geometry applied on multi-frequency SAR data," Remote Sensing, Vol. 9, No. 5, 445, 2017.
doi:10.3390/rs9050445        Google Scholar

11. Fung, A. K., K. S. Chen, and K. S. Chen, Microwave Scattering and Emission Models for Users, Artech House, 2010.

12. Hopsø, I. S., Wet Snow Detection by C-band SAR in Avalanche Forecasting, Master’s thesis, UiT The Arctic University of Norway, 2013.

13. Fayad, A., S. Gascoin, G. Faour, P. Fanise, L. Drapeau, J. Somma, and R. Escadafal, "Snow observations in Mount Lebanon 2011–2016," Earth System Science Data, Vol. 9, No. 2, 573, 2017.
doi:10.5194/essd-9-573-2017        Google Scholar

14. Sihvola, A. H. and J. A. Kong, "Effective permittivity of dielectric mixtures," IEEE Transactions on Geoscience and Remote Sensing, Vol. 26, No. 4, 420-429, 1988.
doi:10.1109/36.3045        Google Scholar

15. Matzler, C. and U. Wegmuller, "Dielectric properties of freshwater ice at microwave frequencies," Journal of Physics D: Applied Physics, Vol. 20, No. 12, 1623, 1987.
doi:10.1088/0022-3727/20/12/013        Google Scholar

16. Hallikainen, M., F. Ulaby, and M. Abdelrazik, "Dielectric properties of snow in the 3 to 37GHz range," IEEE transactions on Antennas and Propagation, Vol. 34, No. 11, 1329-1340, 1986.
doi:10.1109/TAP.1986.1143757        Google Scholar

17. Looyenga, H., "Dielectric constants of heterogeneous mixtures," Physica, Vol. 31, No. 3, 401-406, 1965.
doi:10.1016/0031-8914(65)90045-5        Google Scholar

18. Qi, J., H. Kettunen, H. Wallen, and A. Sihvola, "Different retrieval methods based on S-parameters for the permittivity of composites," 2010 URSI International Symposium on Electromagnetic Theory (EMTS), 588-591, IEEE, August 2010.        Google Scholar

19. Jin, Y. Q. and Z. Li, "Simulation of scattering from complex rough surfaces at low grazing angle incidence using the GFBM/SAA method," IEEJ Transactions on Fundamentals and Materials, Vol. 121, No. 10, 917-921, 2001.
doi:10.1541/ieejfms1990.121.10_917        Google Scholar

20. Ye, H. and Y. Q. Jin, "Parameterization of the tapered incident wave for numerical simulation of electromagnetic scattering from rough surface," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 3, 1234-1237, 2001.        Google Scholar

21. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications, John Wisley and Sons, 2000.
doi:10.1002/0471224286

22. Lawrence, H., F. Demontoux, J. P. Wigneron, A. Mialon, T. D. Wu, V. Mironov, and Y. Kerr, "L-band emission of rough surfaces: Comparison between experimental data and different modeling approaches," 2010 11th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), 27-32, IEEE, March 2010.
doi:10.1109/MICRORAD.2010.5559597        Google Scholar

23. Fung, A. K., M. R. Shah, and S. Tjuatja, "Numerical simulation of scattering from three- dimensional randomly rough surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 5, 986-994, 1994.
doi:10.1109/36.312887        Google Scholar

24. Zhou, L., L. Tsang, V. Jandhyala, Q. Li, and C. H. Chan, "Emissivity simulations in passive microwave remote sensing with 3-D numerical solutions of Maxwell equations," IEEE transactions on Geoscience and Remote Sensing, Vol. 42, No. 8, 1739-1748, 2004.
doi:10.1109/TGRS.2004.830639        Google Scholar

25. Shi, J., C. Xiong, and L. Jiang, "Review of snow water equivalent microwave remote sensing," Science China Earth Sciences, Vol. 59, No. 4, 731-745, 2016.
doi:10.1007/s11430-015-5225-0        Google Scholar