1. Priyadharisini, S. G. and E. Rufus, "A double negative metamaterial inspired miniaturized rectangular patch antenna with improved gain and bandwidth," Progress In Electromagnetics Research Symposium --- Fall (PIERS --- FALL), 2907-2913, Singapore, Nov. 19-22, 2017. Google Scholar
2. Ziolkowiski, R. W., "Design, fabrication and testing of double negative metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1516-1528, 2003.
doi:10.1109/TAP.2003.813622 Google Scholar
3. El-Nady, S., H. Zamel, M. Hendy, A. Attiya, and A. Zekry, "Performance enhancement of end-fire bow-tie antenna by using zero index metamaterial," Progress In Electromagnetics Research Symposium --- Fall (PIERS --- FALL), 1895-1900, Singapore, Nov. 19-22, 2017. Google Scholar
4. Popescu, A.-S., I. Bendoym, T. Rexhepi, and D. Crouse, "Anisotropic zero index material: A method of reducing the footprint of Vivaldi antennas in the UHF range," Progress In Electromagnetics Research C, Vol. 65, 33-43, 2016.
doi:10.2528/PIERC16031703 Google Scholar
5. Zhou, B. and T. J. Cui, "Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 326-329, 2011.
doi:10.1109/LAWP.2011.2142170 Google Scholar
6. Shaw, T., A. Roy, and D. Mitra, "Efficiency enhancement of wireless power transfer system using MNZ metamaterials," Progress In Electromagnetics Research C, Vol. 68, 11-19, 2016.
doi:10.2528/PIERC16081101 Google Scholar
7. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701 Google Scholar
8. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Physical Review B, Vol. 75, No. 15, 2007.
doi:10.1103/PhysRevB.75.155410 Google Scholar
9. Silveirinha, M. G. and N. Engheta, "Tunneling of electromagnetic energy through sub-wavelength channels and bends using ε-near-zero materials," Physical Review Letters, Vol. 97, No. 15, 2006.
doi:10.1103/PhysRevLett.97.157403 Google Scholar
10. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902 Google Scholar
11. Wang, B. and K.-M. Huang, "Shaping the radiation pattern with mu and epsilon-near-zero metamaterials ," Progress In Electromagnetics Research, Vol. 106, 107-119, 2010.
doi:10.2528/PIER10060103 Google Scholar
12. Silveirinha, M. G., A. Alu, B. Edwards, and N. Engheta, "Overview of theory and applications of epsilon-near-zero materials," URSI General Assembly, 44-47, 2008. Google Scholar
13. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Physical Review E, Vol. 70, No. 4, 2004.
doi:10.1103/PhysRevE.70.046608 Google Scholar
14. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero index metamaterial," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.
doi:10.2528/PIER11072710 Google Scholar
15. Pandey, G., H. Singh, and M. Meshram, "Meander-line-based inhomogeneous anisotropic artificial material for gain enhancement of UWB Vivaldi antenna," Applied Physics A, Vol. 122, No. 2, 134(1-9), 2016.
doi:10.1007/s00339-015-9569-2 Google Scholar
16. Nor, N. M., M. H. Jamaluddin, M. R. Kamarudin, and M. Khalily, "Rectangular dielectric resonator antenna array for 28 GHz applications," Progress In Electromagnetics Research C, Vol. 63, 53-61, 2016.
doi:10.2528/PIERC16022902 Google Scholar
17. Parchin, N., M. Shen, and G. Pedersen, "End-Fire phased array 5G antenna design using leaf-shaped bow-tie elements for 28/38 GHz MIMO applications," IEEE International Conference on Ubiquitous Wireless Broadband, 2016. Google Scholar
18. Haraz, O., M. Ali, S. Alshebeili, and A. Sebak, "Design of a 28/38 GHz dual-band printed slot antenna for the future 5G mobile communication networks," IEEE International Antennas Symposium and Propagtion, 1532-1533, 2015. Google Scholar
19. Hamzah, N. and K. A. Othman, "Designing Vivaldi antenna with various sizes using CST software," Proceeding of the World Congress on Engineering (WCE 2011), 1-5, London, UK, 2011. Google Scholar
20. Wang, Y. W., G. M. Wang, and B. F. Zong, "Directivity improvement of Vivaldi antenna using double-slot structure," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1380-1383, 2013.
doi:10.1109/LAWP.2013.2285182 Google Scholar
21. Molaei, A., M. Kaboli, S. A. Mirtaheri, and S. Abrishamian, "Beam-tilting improvement of balanced antipodal vivaldi antenna using a dielectric lens," Proc. 2nd Iranian Conference on Engineering Electromagnetics, 577-581, Tehran, Iran, 2014. Google Scholar
22. Fei, P., Y. C. Jiao, W. Hu, and F. S. Zhang, "A miniaturized antipodal Vivaldi antenna with improved radiation characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 127-130, 2011. Google Scholar
23. Li, L., X. Xia, Y. Liu, and T. Yang, "Wideband balanced antipodal Vivaldi antenna with enhanced radiation parameters," Progress In Electromagnetics Research C, Vol. 66, 163-171, 2016.
doi:10.2528/PIERC16051704 Google Scholar
24. Wan, F., J. Chen, and B. Li, "A novel ultra-wideband antipodal Vivaldi antenna with trapezoidal dielectric substrate," Microwave and Optical Technology Letters, Vol. 60, No. 2, 449-455, 2018.
doi:10.1002/mop.30990 Google Scholar
25. Sun, M., Z. N. Chen, and X. Qing, "Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1741-1746, 2013.
doi:10.1109/TAP.2012.2237154 Google Scholar
26. Bhaskar, M., E. Johari, Z. Akhter, and M. J. Akhtar, "Gain enhancement of the Vivaldi antenna with band notch characteristics using zero-index metamaterial," Microwave and Optical Technology Letters, Vol. 58, No. 1, 233-238, 2016.
doi:10.1002/mop.29534 Google Scholar
27. Chen, X., T. M. Grzegorczyk., B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 2004. Google Scholar
28. Smith, D., S. Schultz, P. Markos, and C. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, 1-5, 2002. Google Scholar
29. Teni, G., N. Zhang, J. H. Qiu, and P. Y. Zhang, "Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 417-420, 2013.
doi:10.1109/LAWP.2013.2253592 Google Scholar
30. Nassar, I. T. and T. M. Weller, "A novel method for improving antipodal Vivaldi antenna performance," IEEE Transactions on Antennas and Propagation, Vol. 63, 3321-3324, 2015.
doi:10.1109/TAP.2015.2429749 Google Scholar
31. Moosazadeh, M. and S. Kharkovsky, "Development of the antipodal Vivaldi antenna for detection of cracks inside concrete members," Microwave and Optical Technology Letters, Vol. 57, No. 7, 1573-1578, 2015.
doi:10.1002/mop.29158 Google Scholar
32. Moosazadeh, M., S. Kharkovsky, and J. T. Case, "Microwave and millimetre wave antipodal Vivaldi antenna with trapezoid-shaped dielectric lens for imaging of construction materials," IET Microwaves Antennas & Propagation, Vol. 10, No. 3, 301-309, 2016.
doi:10.1049/iet-map.2015.0374 Google Scholar
33. Wang, N., M. Fang, J. Qiu, and L. Xiao, "Improved design of balanced antipodal Vivaldi for MMW applications," Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE International Symposium, 2615-2616, 2017. Google Scholar
34. Wan, F., J. Chen, and B. Li, "A novel ultra-wideband antipodal Vivaldi antenna with trapezoidal dielectric substrate," Microwave and Optical Technology Letters, Vol. 60, No. 2, 449-455, 2018.
doi:10.1002/mop.30990 Google Scholar
35. Kerns, D. M., "New method of gain measurement using two identical antennas," Electronics Letters, Vol. 6, No. 11, 348-349, 1970.
doi:10.1049/el:19700245 Google Scholar