1. Minkler, G. and J. Minkler, CFAR: The Principles of Automatic Radar Detection in Clutter, Magellan, Baltimore, 1990.
2. Weinberg, G. V., Radar Detection Theory of Sliding Window Processes, CRC Press, 2017, ISBN 9781498768184.
doi:10.1201/9781315154015
3. Balleri, A., A. Nehorai, and J. Wang, "Maximum likelihood estimation for compound-gaussian clutter with inverse-Gamma texture," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, 775-779, 2007.
doi:10.1109/TAES.2007.4285370 Google Scholar
4. Farshchian, M. and F. L. Posner, "The Pareto distribution for low grazing angle and high resolution X-band sea clutter," IEEE Radar Conference Proceedings, 789-793, 2010. Google Scholar
5. Weinberg, G. V., "Assessing Pareto fit to high resolution high grazing angle sea clutter," IET Electronics Letters, Vol. 47, 516-517, 2011.
doi:10.1049/el.2011.0518 Google Scholar
6. Burr, I.W., "Cumulative frequency functions," Annals of Mathematical Statistics, Vol. 13, 215-232, 1942.
doi:10.1214/aoms/1177731607 Google Scholar
7. Stacy, N. J. S., M. P. Burgess, M. R. Muller, and R. Smith, "Ingara: An integrated airborne imaging radar system," Proceedings of the International Geoscience and Remote Sensing Symposium, 1618-1620, 1996. Google Scholar
8. Stacy, N., D. Crisp, A. Goh, D. Badger, and M. Preiss, "Polarimetric analysis of fine resolution X-band sea clutter data," Proceedings of the International Geoscience and Remote Sensing Symposium, 2787-2790, 2005. Google Scholar
9. Crisp, D. J., N. J. S. Stacy, D. A. Hudson, P. B. Pincus, and A. S. Goh, "Polarimetric analysis of maritime SAR data collected with the DSTO ingara X-band radar," Proceedings of the International Geoscience and Remote Sensing Symposium, 3870-3873, 2007. Google Scholar
10. Crisp, D. J., L. Rosenberg, N. J. Stacy, and Y. Dong, "Modelling X-band sea clutter with the K-distribution: Shape parameter variation," Proceedings of the International Radar Conference-Surveillance for a Safer World, 1-6, 2009. Google Scholar
11. Weinberg, G. V., "Constant false alarm rate detectors for Pareto clutter models," IET Radar, Sonar and Navigation, Vol. 7, 153-163, 2013.
doi:10.1049/iet-rsn.2011.0374 Google Scholar
12. Weinberg, G. V., "General transformation approach for constant false alarm rate detector development," Digital Signal Processing, Vol. 30, 15-26, 2014.
doi:10.1016/j.dsp.2014.04.010 Google Scholar
13. Weinberg, G. V., "Management of interference in Pareto CFAR processes using adaptive test cell analysis," Signal Processing, Vol. 104, 264-273, 2014.
doi:10.1016/j.sigpro.2014.04.025 Google Scholar
14. Weinberg, G. V., "Development of an improved minimum order statistic detection process for Pareto distributed clutter ," IET Radar, Sonar and Navigation, Vol. 9, 19-30, 2015.
doi:10.1049/iet-rsn.2013.0371 Google Scholar
15. Weinberg, G. V., "Examination of classical detection schemes for targets in Pareto distributed clutter: Do classical CFAR detectors exist, as in the Gaussian case?," Multidimensional Systems and Signal Processing, Vol. 26, 599-617, 2015.
doi:10.1007/s11045-013-0275-y Google Scholar
16. Weinberg, G. V., "On the construction of CFAR decision rules via transformations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, 1140-1146, 2017.
doi:10.1109/TGRS.2016.2620138 Google Scholar
17. Finn, H. M. and R. S. Johnson, "Adaptive detection model with threshold control as a function of spatially sampled clutter-level estimates," RCA Review,, Vol. 29, 414-464, 1968. Google Scholar
18. Gandhi, P. P. and S. A. Kassam, "Analysis of CFAR processors in nonhomogeneous background," IEEE Transactions on Aerospace and Electronic Systems, Vol. 24, 427-445, 1988.
doi:10.1109/7.7185 Google Scholar
19. Weinberg, G. V., "An invariant sliding window detection process," IEEE Signal Processing Letters, Vol. 24, 1093-1097, 2017.
doi:10.1109/LSP.2017.2710344 Google Scholar
20. Beaumont, G. P., Intermediate Mathematical Statistics, Chapman and Hall, 1980.
doi:10.1007/978-94-009-5794-7
21. Ross, S. M., Simulation, 5th Ed., Academic Press, 2012.
22. Weinberg, G. V., "Estimation of Pareto clutter parameters using order statistics and linear regression," IET Electronics Letters, Vol. 49, 845-846, 2013.
doi:10.1049/el.2013.0916 Google Scholar
23. Jakeman, E. and P. N. Pusey, "A model for non-Rayleigh sea echo," IEEE Transactions on Antennas and Propagation, Vol. 24, 806-814, 1976.
doi:10.1109/TAP.1976.1141451 Google Scholar
24. Ward, K. D., "Compound representation of high resolution sea clutter," IEE Electronics Letters, Vol. 17, 561-563, 1981.
doi:10.1049/el:19810394 Google Scholar
25. Watts, S., "Radar detection prediction in sea clutter using the compound K-distribution model," IEE Proceedings F, Vol. 132, 613-620, 1985. Google Scholar
26. Weibull, W., "A statistical distribution function of wide applicability," ASME Journal of Applied Mechanics, Vol. 18, 293-297, 1951. Google Scholar
27. Sekine, M. and Y. Mao, Weibull Radar Clutter, IET, UK, 1990.
doi:10.1049/PBRA003E
28. Tao, D., S. N. Anfinsen, and C. Brekke, "Robust CFAR detector based on truncated statistics in multiple-target situations ," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, 117-134, 2016.
doi:10.1109/TGRS.2015.2451311 Google Scholar
29. Tao, D., A. P. Doulgeris, and C. Brekke, "A segmentation-based CFAR detection algorithm using truncated statistics," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, 2887-2898, 2016.
doi:10.1109/TGRS.2015.2506822 Google Scholar
30. Dai, H., L. Du, Y. Wang, and Z. Wang, "A modified CFAR algorithm based on object proposals for ship target detection in SAR images," IEEE Geoscience and Remote Sensing Letters, Vol. 13, 1925-1929, 2016.
doi:10.1109/LGRS.2016.2618604 Google Scholar
31. Gao, G. and G. Shi, "CFAR ship detection in nonhomogeneous sea clutter using polarimetric SAR data based on the notch filter," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, 4811-4824, 2017.
doi:10.1109/TGRS.2017.2701813 Google Scholar
32. Izzo, A., M. Liguori, C. Clemente, C. Galdi, M. Di Bisceglie, and J. J. Soraghan, "Multimodel CFAR detection in foliage penetrating SAR images," IEEE Transactions on Aerospace and Electronic Systems, Vol. 53, 1769-1780, 2017.
doi:10.1109/TAES.2017.2672018 Google Scholar
33. Wang, C., F. Bi, W. Zhang, and L. Chen, "An intensity-space domain CFAR method for ship detection in HR SAR images," IEEE Geoscience and Remote Sensing Letters, Vol. 14, 529-533, 2017.
doi:10.1109/LGRS.2017.2654450 Google Scholar
34. Ai, J., X. Yang, J. Song, Z. Dong, L. Jia, and F. Zhou, "An adaptively truncated clutter-statistics-based two-parameter CFAR detector in SAR imagery," IEEE Journal of Oceanic Engineering, Vol. 43, 267-279, 2018.
doi:10.1109/JOE.2017.2768198 Google Scholar
35. Lu, S., W. Yi, W. Liu, G. Cui, L. Kong, and X. Yang, "Data-dependent clustering-CFAR detector in heterogeneous environment," IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, 476-485, 2018.
doi:10.1109/TAES.2017.2740065 Google Scholar
36. Li, T., Z. Liu, R. Xie, and L. Ren, "An improved superpixel-level CFAR detection method for ship targets in high-resolution SAR images," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 11, 184-194, 2018.
doi:10.1109/JSTARS.2017.2764506 Google Scholar
37. Zhao, W., J. Li, X. Yang, Q. Peng, and J. Wang, "Innovative CFAR detector with effective parameter estimation method for generalised Gamma distribution and iterative sliding window strategy," IET Image Processing, Vol. 12, 60-69, 2018.
doi:10.1049/iet-ipr.2017.0225 Google Scholar
38. Weinberg, G. V., L. Bateman, and P. Hayden, "Constant false alarm rate detection in Pareto Type II clutter ," Digital Signal Processing, Vol. 68, 192-198, 2017.
doi:10.1016/j.dsp.2017.06.014 Google Scholar