Vol. 82
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-09-27
Extraordinary Transmission through Subwavelength Hole Arrays for General Oblique Incidence - Mechanism as Related to Surface Wave Dispersion and Floquet Lattice Diagrams
By
Progress In Electromagnetics Research B, Vol. 82, 49-71, 2018
Abstract
An array of rectangular holes pierced through a conducting screen is treated herein by a rigorous full-wave modal analysis using the moment method entailing Green's functions for rectangular cavities and planar multilayer structures in the spectral domain. Unexpectedly strong diffusions of incident plane waves are observed even at frequencies where the size of each hole is considerably less than the wavelength, posing a transmission efficiency that exceeds unity and thus leading to extraordinary transmission since this defies classical aperture diffraction theory. This paper fortifies the present understanding of the role surface plasmon polaritons (SPP) play in explaining this phenomenon, by using surface-wave dispersion and Floquet lattice diagrams to link up with the peaks in the transmission spectra. The incidence angle and polarization of the irradiation are taken into account in this work.
Citation
Malcolm Ng Mou Kehn, "Extraordinary Transmission through Subwavelength Hole Arrays for General Oblique Incidence - Mechanism as Related to Surface Wave Dispersion and Floquet Lattice Diagrams," Progress In Electromagnetics Research B, Vol. 82, 49-71, 2018.
doi:10.2528/PIERB18070504
References

1. Renk, K. F. and L. Genzel, "Interference filters and Fabry-Perot interferometers for the far infrared," Appl. Opt., Vol. 1, No. 5, 643-648, Sep. 1962.
doi:10.1364/AO.1.000643        Google Scholar

2. Ulrich, R., "Far-infrared properties of metallic mesh and its complementary structure," Infrared Phys., Vol. 7, No. 1, 37-55, Mar. 1967.
doi:10.1016/0020-0891(67)90028-0        Google Scholar

3. Ressler, G. M. and K. D. Moller, "Far infrared bandpass filters and measurements on a reciprocal grid," Appl. Opt., Vol. 6, No. 5, 893-896, May 1967.
doi:10.1364/AO.6.000893        Google Scholar

4. Mitsuishi, A., Y. Otsuka, S. Fujita, and H. Yoshinaga, "Metal mesh filters in the far infrared region," Jpn. J. Appl. Phys., Vol. 2, No. 9, 574-577, Sep. 1963.
doi:10.1143/JJAP.2.574        Google Scholar

5. Chen, C. C., "Diffraction of electromagnetic waves by a conducting screen perforated periodically with circular holes," IEEE Trans. Microw. Theory Tech., Vol. 19, No. 5, 475-481, May 1971.
doi:10.1109/TMTT.1971.1127548        Google Scholar

6. Chen, C. C., "Transmission through a conducting screen perforated periodically with apertures," IEEE Trans. Microw. Theory Tech., Vol. 18, No. 9, 627-632, Sep. 1970.
doi:10.1109/TMTT.1970.1127298        Google Scholar

7. Lee, S. W., G. Zarrillo, and C. L. Law, "Simple formulas for transmission through periodic metal grids or plates," IEEE Trans. Antennas Propag., Vol. 30, No. 5, 904-909, Sep. 1982.
doi:10.1109/TAP.1982.1142923        Google Scholar

8. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667-669, London, Feb. 1998.        Google Scholar

9. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, No. 7 & 8, 163-182, Oct. 1944.        Google Scholar

10. Sambles, J. R., "More than transparent," Nature, Vol. 391, No. 6668, 641-642, London, Feb. 1998.
doi:10.1038/35509        Google Scholar

11. Thio, T., H. J. Lezec, and T. W. Ebbesen, "Strongly enhanced optical transmission through subwavelength holes in metal films," Physica B, Vol. 279, 90-93, Amsterdam, 2000.
doi:10.1016/S0921-4526(99)00677-8        Google Scholar

12. Gordon, R., A. G. Brolo, D. Sinton, and K. L. Kavanagh, "Resonant optical transmission through hole-arrays in metal films: physics and applications," Laser & Photon. Rev., Vol. 4, No. 2, 311-335, Feb. 2010.
doi:10.1002/lpor.200810079        Google Scholar

13. Genet, C. and T. W. Ebbesen, "Light in tiny holes," Nature, Vol. 445, 39-46, Jan. 2007.
doi:10.1038/nature05350        Google Scholar

14. Coe, J. V., J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, "Extraordinary transmission of metal films with arrays of subwavelength holes," Ann. Rev. Phys. Chem., Vol. 59, 179-202, 2008.
doi:10.1146/annurev.physchem.59.032607.093703        Google Scholar

15. Stewart, M. E., C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, "Nanostructured plasmonic sensors," Chem. Rev., Vol. 108, 494-521, Jan. 2008.
doi:10.1021/cr068126n        Google Scholar

16. Gordon, R., D. Sinton, K. L. Kavanagh, and A. G. Brolo, "A new generation of sensors based on extraordinary optical transmission," Acc. Chem. Res., Vol. 41, No. 8, 1049-1057, Jul. 2008.
doi:10.1021/ar800074d        Google Scholar

17. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, 1988.
doi:10.1007/BFb0048317

18. Ghaemi, H. F., T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phy. Rev. B, Vol. 58, 6779-6782, Sep. 1998.
doi:10.1103/PhysRevB.58.6779        Google Scholar

19. Grupp, D. E., H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett., Vol. 77, 1569-1571, 2000.
doi:10.1063/1.1308530        Google Scholar

20. Schroter, U. and D. Heitmann, "Surface-plasmon-enhanced transmission through metallic gratings," Phys. Rev. B, Vol. 58, No. v, 419-421, Dec. 1998.        Google Scholar

21. Treacy, M. M. J., "Dynamical diffraction in metallic optical gratings," Appl. Phys. Lett., Vol. 75, No. 5, 606-608, Aug. 1999.
doi:10.1063/1.124455        Google Scholar

22. Porto, J. A., F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett., Vol. 83, No. 14, 2845-2848, Oct. 1999.
doi:10.1103/PhysRevLett.83.2845        Google Scholar

23. Popov, E., M. Neviere, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B, Vol. 62, No. 23, 16100-16108, Dec. 2000.
doi:10.1103/PhysRevB.62.16100        Google Scholar

24. Enoch, S., E. Popov, M. Neviere, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A, Vol. 4, No. 5, S83-S87, Aug. 2002.
doi:10.1088/1464-4258/4/5/351        Google Scholar

25. Krishan, A., T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun., Vol. 200, No. 1-6, 1-7, Dec. 2001.
doi:10.1016/S0030-4018(01)01558-9        Google Scholar

26. Martin-Moreno, L., F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett., Vol. 86, 1114-1117, Feb. 2001.
doi:10.1103/PhysRevLett.86.1114        Google Scholar

27. Darmanyan, S. A. and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study," Phys. Rev. B, Vol. 67, 035424, 1-7, Jan. 2003.        Google Scholar

28. Popov, E., M. Neviere, P. Boyer, and N. Bonod, "Light transmission through a subwavelength hole," Optics Commun., Vol. 255, 338-348, Jun. 2005.
doi:10.1016/j.optcom.2005.06.010        Google Scholar

29. Sobnack, M. B., W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, "Stationary surface plasmons on a zero-order metal grating," Phys. Rev. Lett., Vol. 80, No. 25, 5667-5670, Jun. 1998.
doi:10.1103/PhysRevLett.80.5667        Google Scholar

30. Astilean, S., P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun., Vol. 175, 265-273, Mar. 2000.
doi:10.1016/S0030-4018(00)00462-4        Google Scholar

31. Takakura, Y., "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett., Vol. 86, No. 24, 5601-5603, Jun. 2001.
doi:10.1103/PhysRevLett.86.5601        Google Scholar

32. Krishnan, A., T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Optics Commun., Vol. 200, 1-7, Dec. 2001.
doi:10.1016/S0030-4018(01)01558-9        Google Scholar

33. Medina, F., F. Mesa, and R. Marques, "Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective," IEEE Trans. Microw. Theory Techn., Vol. 56, No. 2, 3108-3120, Dec. 2008.
doi:10.1109/TMTT.2008.2007343        Google Scholar

33. Medina, F., F. Mesa, and R. Marque, "Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,", Vol. 56, No. 2, 3108-3120, Dec. 2008.
doi:10.1109/TMTT.2008.2007343        Google Scholar

34. Medina, F., F. Mesa, and D. C. Skigin, "Extraordinary transmission through arrays of slits: a circuit theory model," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 1, 105-115, Jan. 2010.
doi:10.1109/TMTT.2009.2036341        Google Scholar

35. Beruete, M., M. Navarro-Cia, and M. S. Ayza, "Understanding anomalous extraordinary transmission from equivalent circuit and grounded slab concepts," IEEE Trans. Microw. Theory Techn., Vol. 59, No. 9, 2180-2188, Sep. 2011.
doi:10.1109/TMTT.2011.2160076        Google Scholar

36. Beruete, M., I. Campillo, M. Navarro-Ca, F. Falcone, and M. Sorolla, "Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1514-1521, Jun. 2007.
doi:10.1109/TAP.2007.897324        Google Scholar

37. Delgado, V., R. Marques, and L. Jelinek, "Coupled-wave surface-impedance analysis of extraordinary transmission through single and stacked metallic screens," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1342-1351, Mar. 2013.
doi:10.1109/TAP.2012.2227657        Google Scholar

38. Beruete, M., M. Sorolla, I. Campillo, and J. S. Dolado, "Increase of the transmission in cut-off metallic hole arrays," IEEE Microw. Wireless Comp. Lett., Vol. 15, No. 2, 116-118, Feb. 2005.
doi:10.1109/LMWC.2004.842852        Google Scholar

39. Lomakin, V. and E. Michielssen, "Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs," Phys. Rev. B, Vol. 71, No. 23, 235117, Jun. 2005.
doi:10.1103/PhysRevB.71.235117        Google Scholar

40. Lomakin, V. and E. Michielssen, "Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 970-984, Mar. 2006.
doi:10.1109/TAP.2006.869896        Google Scholar

41. Bravo-Abad, J., I. Martin-Moreno, and F. J. Garcia-Vidal, "Resonant transmission of light through subwavelength holes in thick metal films," IEEE J. Selec. Topics Quan. Electron., Vol. 12, No. 6, 1221-1227, Nov./Dec. 2006.
doi:10.1109/JSTQE.2006.881640        Google Scholar

42. Mary, A., S. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B, Vol. 76, No. 19, 195414, Nov. 2007.
doi:10.1103/PhysRevB.76.195414        Google Scholar

43. Chen, Y., Y.Wang, Y. Zhang, and S. Liu, "Numerical investigation of the transmission enhancement through subwavelength hole array," Optics Commun., Vol. 274, 236-240, Feb. 2007.
doi:10.1016/j.optcom.2007.02.001        Google Scholar

44. Schuchinsky, A. G., D. E. Zelenchuk, and A. M. Lerer, "Enhanced transmission in microwave arrays of periodic sub-wavelength apertures," J. Opt. A: Pure Appl. Opt., Vol. 7, S102-S109, Jan. 2005.
doi:10.1088/1464-4258/7/2/014        Google Scholar

45. Schuchinsky, A. G., D. E. Zelenchuk, A. M. Lerer, and R. Dickie, "Full-wave analysis of layered aperture arrays," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 490-502, Feb. 2006.
doi:10.1109/TAP.2005.863086        Google Scholar

46. Monni, S., G. Gerini, A. Neto, and A. G. Tijhuis, "Multi-mode equivalent networks for the design and analysis of frequency selective surfaces," IEEE Trans. Antennas Propag., Vol. 55, No. 10, 2824-2835, Oct. 2007.
doi:10.1109/TAP.2007.905846        Google Scholar

47. Beruete, M., M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett., Vol. 29, No. 21, 2500-2502, Nov. 2004.
doi:10.1364/OL.29.002500        Google Scholar

48. Beruete, M., M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimeter wave transmission through quasioptical subwavelength perforated plates," IEEE Trans. Antennas Propag., Vol. 53, No. 6, 1897-1903, Jun. 2005.
doi:10.1109/TAP.2005.848689        Google Scholar

49. Hu, D. and Y. Zhang, "Localized surface plasmons-based transmission enhancement of terahertz radiation through metal aperture arrays," Optik, Vol. 121, 1423-1426, Feb. 2009.        Google Scholar

50. Shirmanesh, G. K., A. Khavasi, and K. Mehrany, "Accurate effective medium theory for arrays of metallic nanowires," Journal of Optics, Vol. 17, 025104, 2015.
doi:10.1088/2040-8978/17/2/025104        Google Scholar

51. Yarmoghaddam, E., G. K. Shirmanesh, A. Khavasi, and K. Mehrany, "Circuit model for periodic array of slits with multiple propagating diffracted orders," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4041-4048, Aug. 2018.
doi:10.1109/TAP.2014.2322884        Google Scholar

52. Ng Mou Kehn, M., "Modal analysis of substrate integrated waveguides with rectangular via-holes using cavity and multilayer Green's functions," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 10, 2214-2231, Oct. 2014.
doi:10.1109/TMTT.2014.2344626        Google Scholar

53. Lord Rayleigh "On the dynamical theory of gratings," Proc. R. Soc. London, Ser. A, Vol. 79, 399, 1907.        Google Scholar

54. Lord Rayleigh "Note on the remarkable case of diffraction spectra described by Prof. Wood," Philos. Mag., Vol. 14, 60, 1907.
doi:10.1080/14786440709463661        Google Scholar

55. Balanis, C. A., Antenna Theory, Analysis and Design, 2nd Ed., John Wiley & Sons, Inc., 1997.