1. Liao, K. H., A. G. Mordovanakis, B. Hou, G. Chang, M. Rever, G. Mourou, J. Nees, and A. Galvanauskas, "Generation of hard X-rays using an ultrafast fiber laser system," Opt. Express, Vol. 15, 13942-13948, 2007.
doi:10.1364/OE.15.013942 Google Scholar
2. Kelson, I. and A. Hardy, "Optimization of strongly pumped fiber lasers," J. Ligthwave Technol., Vol. 17, 891-897, 1999.
doi:10.1109/50.762908 Google Scholar
3. Zervas, M. N. and C. A. Codemard, "High power fiber lasers: A review," IEEE J. Select. Topic. Quant. Electron., Vol. 20, 0904123, 2014.
doi:10.1109/JSTQE.2014.2321279 Google Scholar
4. Susnjar, P., V. Agrez, and R. Petkovsek, "Photodarkening as a heat source in ytterbium doped fiber amplifiers," Opt. Express, Vol. 26, 6420-642615265-15277, 2018.
doi:10.1364/OE.26.006420 Google Scholar
5. Engholm, M., L. Norin, C. Hirt, S. T. Fredrich-Thorntonc, K. Petermannc, and G. Huberc, "Quenching processes in Yb lasers correlation to the valence stability of the Yb ion," Proc. of SPIE, Vol. 7193, 71931U-1, 2009.
doi:10.1117/12.811977 Google Scholar
6. Ward, B., "Theory and modeling of photodarkening induced quasi static degradation in fiber amplifiers," Opt. Express, Vol. 24, 3488-3501, 2016.
doi:10.1364/OE.24.003488 Google Scholar
7. Ding, M. and P. K. Cheo, "Dependence of ion-pair induced self-pulsing in Er-doped fiber lasers on emission to absorption ratio," IEEE. Photon. Technol. Lett., Vol. 8, 1627-1629, 1996.
doi:10.1109/68.544699 Google Scholar
8. Huang, L., H. Zhang, X. Wang, and P. Zhou, "Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125 C," IEEE Photonics Journal, Vol. 8, 1501407, 2016. Google Scholar
9. Brown, D. C. and H. J. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quant. Electron., Vol. 37, 207-217, 2001.
doi:10.1109/3.903070 Google Scholar
10. Oron, R. and A. A. Hardy, "Rayleigh backscattering and amplified spontaneous emission in high-power Ytterbium-doped fiber amplifiers," J. Opt. Soc. Am. B, Vol. 16, 695-801, 1999.
doi:10.1364/JOSAB.16.000695 Google Scholar
11. Kaushal, H. and G. Kaddoum, "Applications of lasers for tactical military operations," Digital Object Identifier 10.1109/ACCESS, Vol. 5, 20736-20753, 2017. Google Scholar
12. Dong, L. and B. Samson, Fiber Lasers: Basics, Technology, and Applications, CRC Press, printed on acid-free paper, 2017.
13. Shao, H., K. Duan, Y. Zhu, H. Yan, H. Yang, and W. Zhao, "Numerical analysis of Ytterbium-doped double-clad fiber lasers based on the temperature-dependent rate equation," Optik, Vol. 124, 4336-4340, 2013.
doi:10.1016/j.ijleo.2013.02.017 Google Scholar
14. Yang, J., Y. Wang, Y. Tang, and J. Xu, "Influences of pump transitions on thermal effects of multi-kilowatt thulium-doped fiber lasers,", arXiv:1503.07256v1 [physics.optics], 2015. Google Scholar
15. Baravets, Y., F. Todorov, and P. Honzatko, "High-power thulium-doped fiber laser in an all-fiber configuration," Proceedings of the SPIE, Vol. 10142, id. 101420G 4, 2016. Google Scholar
16. Wagener, J. L., P. F. Wysocki, M. J. F. Digonnet, H. J. Shaw, and D. J. Digiovanni, "Effects of concentration and clusters in erbium-doped fiber lasers," Opt. Lett., Vol. 18, 2014-2016, 1993.
doi:10.1364/OL.18.002014 Google Scholar
17. Dawson, J. W., M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, "Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power," Opt. Express, Vol. 16, 13240-13266, 2008.
doi:10.1364/OE.16.013240 Google Scholar
18. Yao, T., J. Ji, and J. Nilsson, "Ultra-low quantum-defect heating in Ytterbium-doped aluminosilicate fibers," J. Lightwav. Technol., Vol. 32, 429-434, 2014.
doi:10.1109/JLT.2013.2290284 Google Scholar
19. Rimington, N. W., S. L. Schieffer, W. Andreas Schroeder, and B. K. Brickeen, "Thermal lens shaping in Brewster gain media: A high-power, diode-pumped Nd:GdVO4 laser," Opt. Express, Vol. 12, 1426-1436, 2004.
doi:10.1364/OPEX.12.001426 Google Scholar
20. Kuznetsov, M. S., O. L. Antipov, A. A. Fotiadi, and P. Megret, "Electronic and thermal refractive index changes in Ytterbium-doped fiber amplifiers," Opt. Express, Vol. 21, 22374-22388, 2013.
doi:10.1364/OE.21.022374 Google Scholar
21. Sabaeian, M. and H. Nadgaran, "Investigation of thermal dispersion and thermally-induced birefringence on high-power double clad Yb:glass fiber laser," International Journal of Optics and Photonics (IJOP), Vol. 2, 25-31, 2008. Google Scholar
22. Kong, F., J. Xue, R. H. Stolen, and L. Dong, "Direct experimental observation of stimulated thermal Rayleigh scattering with polarization modes in a fiber amplifier," LET Optica, Vol. 3, 975-978, 2016.
doi:10.1364/OPTICA.3.000975 Google Scholar
23. Kelson, I. and A. A. Hardy, "Strongly pumped fiber lasers," IEEE J. Quant. Electron., Vol. 34, 1570-1577, 1998.
doi:10.1109/3.709573 Google Scholar
24. Xiao, L., P. Yan, M. Gong, W. Wei, and P. Ou, "An approximate analytic solution of strongly pumped Yb-doped double-clad fiber lasers without neglecting the scattering loss," Opt. Commun., Vol. 230, 401-410, 2004.
doi:10.1016/j.optcom.2003.11.017 Google Scholar
25. Hardy, A., "Signal amplification in strongly pumped fiber amplifiers," IEEE. J. Quant. Electron., Vol. 33, 307-313, 1997.
doi:10.1109/3.555997 Google Scholar
26. Karimi, M. and A. H. Farahbod, "Improved shooting algorithm using answer ranges definition to design doped optical fiber laser," Opt. Commun., Vol. 324, 212-220, 2014.
doi:10.1016/j.optcom.2014.03.013 Google Scholar
27. Hu, X., T. Ning, L. Pei, and W. Jian, "Novel shooting method with simple control strategy for fiber lasers," Optik, Vol. 125, 1975-1979, 2014.
doi:10.1016/j.ijleo.2013.09.077 Google Scholar
28. Luo, Z., C. Ye, G. Sun, Z. Cai, M. Si, and Q. Li, "Simplified analytic solutions and a novel fast algorithm for Yb3+-doped double-clad fiber lasers," Opt. Commun., Vol. 277, 118-124, 2007.
doi:10.1016/j.optcom.2007.03.053 Google Scholar
29. Digonnet, M. J. F., "Theory of superfluorescent fiber lasers," J. Lightwave Technol., Vol. 4, 1631-1639, 1986.
doi:10.1109/JLT.1986.1074661 Google Scholar
30. Desurvire, E., Erbium Doped Fiber Amplifiers: Principles and Applications, Wiley, New York, 1994.
31. Karimi, M., N. Granpayeh, and M. K. Moravvej Farshi, "Analysis and design of the dye doped polymer optical fiber amplifiers," Appl. Physics B, Vol. 78, 387-396, 2004.
doi:10.1007/s00340-003-1390-5 Google Scholar
32. Brunet, F., Y. Taillon, P. Galarneau, and S. Larochelle, "Practical design of double-clad Ytterbium-doped fiber amplifiers using Giles parameters," IEEE J. Quant. Electron., Vol. 40, 1294-1300, 2004.
doi:10.1109/JQE.2004.833223 Google Scholar
33. Yan, P., X. Wang, Y. Huang, C. Fu, J. Sun, Q. Xiao, D. Li, and M. Gong, "Fiber core mode leakage induced by refractive index variation in high-power fiber laser," Chin. Phys. B, Vol. 26, 034205, 2017.
doi:10.1088/1674-1056/26/3/034205 Google Scholar
34. Agrawal, G. P., Fiber-optic Communication Systems, 3rd Ed., A John Wiley & Sons, Inc., 2002.
doi:10.1002/0471221147
35. Karimi, M., "Optimization of core size in erbium doped holey fiber amplifiers," Optik, Vol. 125, 2780-2783, 2014.
doi:10.1016/j.ijleo.2013.11.054 Google Scholar
36. Prudenzano, F., "Erbium-doped hole-assisted optical fiber amplifier: Design and optimization," J. Ligthwave Technol., Vol. 23, 330-340, 2005.
doi:10.1109/JLT.2004.838808 Google Scholar
37. Marcuse, D., "Loss analysis of single-mode fiber splices," The Bell System Technology Journal, Vol. 56, 703-718, 1977.
doi:10.1002/j.1538-7305.1977.tb00534.x Google Scholar
38. Leproux, P. and S. Fevrier, "Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of the pump," Optical Fiber Technol., Vol. 6, 324-339, 2001.
doi:10.1006/ofte.2001.0361 Google Scholar
39. Kouznetsov, D. and J. V. Moloney, "Highly efficient, high-gain, short-length, and power-scalable incoherent diode slab-pumped fiber amplifier/laser," IEEE J. Quant. Electron., Vol. 39, 1452-1461, 2003.
doi:10.1109/JQE.2003.818311 Google Scholar
40. Quintela, M. A., C. Lavin, M. Lomer, A. Quintela, and J. M. Lopez-Higuera, "Superfluorescent erbium doped fiber optic sources comparative study," Proc. of SPIE, Vol. 5952, 1-10, 2005. Google Scholar
41. Casperson, L. W. and A. Yariv, "Spectral narrowing in high-gain lasers," IEEE J. Quantum. Electron., Vol. 8, 80, 1972.
doi:10.1109/JQE.1972.1076944 Google Scholar
42. Xiao, L., P. Yan, M. Gong, W. Wei, and P. Ou, "An approximate analytic solution of strongly pumped Yb-doped double-clad fiber lasers without neglecting the scattering loss," Opt. Commun., Vol. 230, 401-410, 2004.
doi:10.1016/j.optcom.2003.11.017 Google Scholar
43. Pask, H. M., R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: Versatile sources for the 1-1.2 pm region," IEEE J. Selected Top. in Quant. Electron., Vol. 1, 2-13, 1995.
doi:10.1109/2944.468377 Google Scholar
44. Lim, C. and Y. Izawa, "Modeling of end-pumped CW quasi-three-level lasers," IEEE J. Quant. Electron., Vol. 38, 306-311, 2002.
doi:10.1109/3.985572 Google Scholar
45. Kong, F., C. Dunn, J. Parsons, M. T. Kalichevsky-Dong, T. W. Hawkins, M. Jones, and L. Dong, "Large-mode-area fibers operating near singlemode regime," Opt. Express, Vol. 24, 10295-10301, 2016.
doi:10.1364/OE.24.010295 Google Scholar
46. Wielandy, S., "Implications of higher-order mode content in large mode area fibers with good beam quality," Opt. Express, Vol. 15, 15402-15409, 2016.
doi:10.1364/OE.15.015402 Google Scholar
47. Snitzer, E., H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, "Double-clad, offset core Nd fiber laser," The Opt. Fiber Commun. Conf., New Orleans, LA, PD5, 1988. Google Scholar
48. Jauregui, C., H. J. Otto, S. Breitkopf, J. Limpert, and A. T¨unnermann, "Optimizing the mode instability threshold of high-power fiber laser systems," Proc. of SPIE, Fiber Lasers XIII: Technology, Systems, and Applications, Vol. 9728, 97280B, 2015. Google Scholar
49. Otto, H. J., N. Modsching, C. Jauregui, J. Limpert, and A. T¨unnermann, "Impact of photodarkening on the mode instability threshold," Opt. Express, Vol. 23, 15265-15277, 2015.
doi:10.1364/OE.23.015265 Google Scholar
50. Jauregui, C., H. J. Ottoa, C. Stihler, J. Limpert, and A. Tunnermann, "The impact of core co-dopants on the mode instability threshold of high-power fiber laser systems," Proc. of SPIE, Fiber Lasers XIV: Technology and Systems, Vol. 10083, 100830N, 2017. Google Scholar
51. Li, J., K. Duan, Y. Wang, X. Cao, W. Zhao, Y. Guo, and X. Lin, "Theoretical analysis of the heat dissipation mechanism in Yb3+-doped double-clad fiber lasers," J. Modern Optic, Vol. 55, 459-471, 2008.
doi:10.1080/09500340701477784 Google Scholar
52. Yan, P., A. Xu, and M. Gong, "Numerical analysis of temperature distributions in Yb-doped double-clad fiber lasers with consideration of radiative heat transfer," Opt. Engin., Vol. 45, 124201, 2006.
doi:10.1117/1.2402934 Google Scholar
53. Davis, M. K., M. J. F. Digonnet, and R. H. Pantell, "Thermal effects in doped fibers," J. Lightwave Technol., Vol. 16, 1013-1013, 1998.
doi:10.1109/50.681458 Google Scholar
54. Li, J., Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and Y. Liu, "Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser," Opt. Commun., Vol. 284, 1278-1283, 2011.
doi:10.1016/j.optcom.2010.10.062 Google Scholar
55. Lapointe, M. A., S. Chatigny, M. Pich´e, M. C. Skaff, and J. N. Maran, "Thermal effects in high-power CW fiber lasers," Proc. SPIE Fiber Lasers VI: Technology, Systems, and Applications, Vol. 7195, 1U, 2009. Google Scholar
56. Jauregui, C., H. J. Otto, F. Stutzki, J. Limpert, and A. Tunnermann, "Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening," Opt. Express, Vol. 23, 20203-20218, 2015.
doi:10.1364/OE.23.020203 Google Scholar
57. Lood, F. and N. P. Kherani, "Influence of luminescent material properties on stimulated emission luminescent solar concentrators (SELSCs) using a 4-level system," Opt. Express, Vol. 25, A1023, 2017.
doi:10.1364/OE.25.0A1023 Google Scholar
58. Ward, B., "Theory and modeling of photodarkening induced quasi static degradation in fiber amplifiers," Opt. Express, Vol. 24, 3488-3501, 2016.
doi:10.1364/OE.24.003488 Google Scholar
59. Kuznetsov, M. S., O. L. Antipov, A. A. Fotiadi, and P. Megret, "Electronic and thermal refractive index changes in Ytterbium-doped fiber amplifiers," Opt. Express, Vol. 21, 22374-22388, 2013.
doi:10.1364/OE.21.022374 Google Scholar
60. Abouricha, M., A. Boulezhar, and N. Habiballah, "The comparative study of the temperature distribution of fiber laser with different pump schemes," O. J. Metal, Vol. 3, 64-71, 2013.
doi:10.4236/ojmetal.2013.34010 Google Scholar
61. Naderi, S., I. Dajani, T. Madden, and C. Robin, "Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations," Opt. Express, Vol. 21, 16111-16129, 2013.
doi:10.1364/OE.21.016111 Google Scholar
62. Hansen, K. R., T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, "Theoretical analysis of mode instability in high-power fiber amplifiers," Opt. Express, Vol. 21, 1944-1971, 2013.
doi:10.1364/OE.21.001944 Google Scholar
63. Smith, A. V. and J. J. Smith, "Increasing mode instability thresholds of fiber amplifiers by gain saturation," Opt. Express, Vol. 21, 15168-15182, 2013.
doi:10.1364/OE.21.015168 Google Scholar
64. Ward, B., C. Robin, and I. Dajani, "Origin of thermal modal instabilities in large mode area fiber amplifiers," Opt. Express, Vol. 2, 11407-11422, 2012.
doi:10.1364/OE.20.011407 Google Scholar
65. Ward, B. G., "Accurate modeling of rod-type photonic crystal fiber amplifiers," Proc. of SPIE, Vol. 9728, 97280F-1, 2015. Google Scholar
66. Tao, R., P. Ma, X. Wang, P. Zhou, and Z. Liu, "1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities," Photon. Res., Vol. 3, 86-93, 2015.
doi:10.1364/PRJ.3.000086 Google Scholar
67. Tao, R., X. Wang, P. Zhou, and Z. Liu, "Seed power dependence of mode instabilities in high power fiber amplifiers," J. Opt., 103667.R1, 2017. Google Scholar
68. Lægsgaard, J., "Static thermo-optic instability indouble-pass fiber amplifiers," Opt. Express, Vol. 24, 13429-13443, 2016.
doi:10.1364/OE.24.013429 Google Scholar
69. Gong, M., Y. Yuan, C. Li, P. Yan, H. Zhang, and S. Liao, "Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers," Opt. Express, Vol. 15, 3236-3246, 2007.
doi:10.1364/OE.15.003236 Google Scholar
70. Mohammed, Z., H. Saghafifar, and M. Soltanolkotabi, "An approximate analytical model for temperature and power distribution in high power Yb-doped double clad fiber lasers," Laser Phys., Vol. 24, 115107, 2014.
doi:10.1088/1054-660X/24/11/115107 Google Scholar
71. Sabaeian, M., H. Nadgaran, M. De Sario, L. Mescia, and F. Prudenzano, "Thermal effects on double clad octagonal Yb:glass fiber laser," Optical Materials, Vol. 31, 1300-1305, 2009.
doi:10.1016/j.optmat.2008.10.034 Google Scholar
72. Neumark, S., Solution of Cubic and Quartic Equations, 1st Ed., Pergam on Press, Oxford, 1965.
73. Kelson, I. and A. Hardy, "Optimization of strongly pumped fiber lasers," J. of Ligthwave Technol., Vol. 17, 891-897, 1999.
doi:10.1109/50.762908 Google Scholar
74. Pask, H. M., R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: Versatile sources for the 1–1.2 pm region," IEEE J. of Quant. Electron., Vol. 1, 2-13, 1995.
doi:10.1109/2944.468377 Google Scholar
75. Fan, Y., B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, "Thermal effects in kilowatt all-fiber MOPA," Opt. Express, Vol. 19, 15162-15172, 2011.
doi:10.1364/OE.19.015162 Google Scholar