Vol. 88
Latest Volume
All Volumes
PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-11-05
Theoretical Study of the Thermal Distribution in Yb-Doped Double-Clad Fiber Laser by Considering Different Heat Sources
By
Progress In Electromagnetics Research C, Vol. 88, 59-76, 2018
Abstract
Thermal effects limit the gain, quality, and stability of high power fiber lasers and amplifiers. In this paper, different values of heat conductive coefficients at the core, the first and second clad with the complete form of the heat transfer equation are considered. A quartic equation was proposed to determine the temperature at the fiber laser surface. Using the surface temperature value, the temperature can be determined at the longitudinal and radial position of the double clad fiber laser. The different definitions of heat sources which were previously presented in articles is used to describe the heat generation at a double clad high pump power fiber laser condition. The results were compared to each other, and the percentage of each factor in heat generation was calculated.
Citation
Maryam Karimi, "Theoretical Study of the Thermal Distribution in Yb-Doped Double-Clad Fiber Laser by Considering Different Heat Sources," Progress In Electromagnetics Research C, Vol. 88, 59-76, 2018.
doi:10.2528/PIERC18081505
References

1. Liao, K. H., A. G. Mordovanakis, B. Hou, G. Chang, M. Rever, G. Mourou, J. Nees, and A. Galvanauskas, "Generation of hard X-rays using an ultrafast fiber laser system," Opt. Express, Vol. 15, 13942-13948, 2007.
doi:10.1364/OE.15.013942

2. Kelson, I. and A. Hardy, "Optimization of strongly pumped fiber lasers," J. Ligthwave Technol., Vol. 17, 891-897, 1999.
doi:10.1109/50.762908

3. Zervas, M. N. and C. A. Codemard, "High power fiber lasers: A review," IEEE J. Select. Topic. Quant. Electron., Vol. 20, 0904123, 2014.
doi:10.1109/JSTQE.2014.2321279

4. Susnjar, P., V. Agrez, and R. Petkovsek, "Photodarkening as a heat source in ytterbium doped fiber amplifiers," Opt. Express, Vol. 26, 6420-642615265-15277, 2018.
doi:10.1364/OE.26.006420

5. Engholm, M., L. Norin, C. Hirt, S. T. Fredrich-Thorntonc, K. Petermannc, and G. Huberc, "Quenching processes in Yb lasers correlation to the valence stability of the Yb ion," Proc. of SPIE, Vol. 7193, 71931U-1, 2009.
doi:10.1117/12.811977

6. Ward, B., "Theory and modeling of photodarkening induced quasi static degradation in fiber amplifiers," Opt. Express, Vol. 24, 3488-3501, 2016.
doi:10.1364/OE.24.003488

7. Ding, M. and P. K. Cheo, "Dependence of ion-pair induced self-pulsing in Er-doped fiber lasers on emission to absorption ratio," IEEE. Photon. Technol. Lett., Vol. 8, 1627-1629, 1996.
doi:10.1109/68.544699

8. Huang, L., H. Zhang, X. Wang, and P. Zhou, "Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125 C," IEEE Photonics Journal, Vol. 8, 1501407, 2016.

9. Brown, D. C. and H. J. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quant. Electron., Vol. 37, 207-217, 2001.
doi:10.1109/3.903070

10. Oron, R. and A. A. Hardy, "Rayleigh backscattering and amplified spontaneous emission in high-power Ytterbium-doped fiber amplifiers," J. Opt. Soc. Am. B, Vol. 16, 695-801, 1999.
doi:10.1364/JOSAB.16.000695

11. Kaushal, H. and G. Kaddoum, "Applications of lasers for tactical military operations," Digital Object Identifier 10.1109/ACCESS, Vol. 5, 20736-20753, 2017.

12. Dong, L. and B. Samson, Fiber Lasers: Basics, Technology, and Applications, CRC Press, printed on acid-free paper, 2017.

13. Shao, H., K. Duan, Y. Zhu, H. Yan, H. Yang, and W. Zhao, "Numerical analysis of Ytterbium-doped double-clad fiber lasers based on the temperature-dependent rate equation," Optik, Vol. 124, 4336-4340, 2013.
doi:10.1016/j.ijleo.2013.02.017

14. Yang, J., Y. Wang, Y. Tang, and J. Xu, "Influences of pump transitions on thermal effects of multi-kilowatt thulium-doped fiber lasers,", arXiv:1503.07256v1 [physics.optics], 2015.

15. Baravets, Y., F. Todorov, and P. Honzatko, "High-power thulium-doped fiber laser in an all-fiber configuration," Proceedings of the SPIE, Vol. 10142, id. 101420G 4, 2016.

16. Wagener, J. L., P. F. Wysocki, M. J. F. Digonnet, H. J. Shaw, and D. J. Digiovanni, "Effects of concentration and clusters in erbium-doped fiber lasers," Opt. Lett., Vol. 18, 2014-2016, 1993.
doi:10.1364/OL.18.002014

17. Dawson, J. W., M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, "Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power," Opt. Express, Vol. 16, 13240-13266, 2008.
doi:10.1364/OE.16.013240

18. Yao, T., J. Ji, and J. Nilsson, "Ultra-low quantum-defect heating in Ytterbium-doped aluminosilicate fibers," J. Lightwav. Technol., Vol. 32, 429-434, 2014.
doi:10.1109/JLT.2013.2290284

19. Rimington, N. W., S. L. Schieffer, W. Andreas Schroeder, and B. K. Brickeen, "Thermal lens shaping in Brewster gain media: A high-power, diode-pumped Nd:GdVO4 laser," Opt. Express, Vol. 12, 1426-1436, 2004.
doi:10.1364/OPEX.12.001426

20. Kuznetsov, M. S., O. L. Antipov, A. A. Fotiadi, and P. Megret, "Electronic and thermal refractive index changes in Ytterbium-doped fiber amplifiers," Opt. Express, Vol. 21, 22374-22388, 2013.
doi:10.1364/OE.21.022374

21. Sabaeian, M. and H. Nadgaran, "Investigation of thermal dispersion and thermally-induced birefringence on high-power double clad Yb:glass fiber laser," International Journal of Optics and Photonics (IJOP), Vol. 2, 25-31, 2008.

22. Kong, F., J. Xue, R. H. Stolen, and L. Dong, "Direct experimental observation of stimulated thermal Rayleigh scattering with polarization modes in a fiber amplifier," LET Optica, Vol. 3, 975-978, 2016.
doi:10.1364/OPTICA.3.000975

23. Kelson, I. and A. A. Hardy, "Strongly pumped fiber lasers," IEEE J. Quant. Electron., Vol. 34, 1570-1577, 1998.
doi:10.1109/3.709573

24. Xiao, L., P. Yan, M. Gong, W. Wei, and P. Ou, "An approximate analytic solution of strongly pumped Yb-doped double-clad fiber lasers without neglecting the scattering loss," Opt. Commun., Vol. 230, 401-410, 2004.
doi:10.1016/j.optcom.2003.11.017

25. Hardy, A., "Signal amplification in strongly pumped fiber amplifiers," IEEE. J. Quant. Electron., Vol. 33, 307-313, 1997.
doi:10.1109/3.555997

26. Karimi, M. and A. H. Farahbod, "Improved shooting algorithm using answer ranges definition to design doped optical fiber laser," Opt. Commun., Vol. 324, 212-220, 2014.
doi:10.1016/j.optcom.2014.03.013

27. Hu, X., T. Ning, L. Pei, and W. Jian, "Novel shooting method with simple control strategy for fiber lasers," Optik, Vol. 125, 1975-1979, 2014.
doi:10.1016/j.ijleo.2013.09.077

28. Luo, Z., C. Ye, G. Sun, Z. Cai, M. Si, and Q. Li, "Simplified analytic solutions and a novel fast algorithm for Yb3+-doped double-clad fiber lasers," Opt. Commun., Vol. 277, 118-124, 2007.
doi:10.1016/j.optcom.2007.03.053

29. Digonnet, M. J. F., "Theory of superfluorescent fiber lasers," J. Lightwave Technol., Vol. 4, 1631-1639, 1986.
doi:10.1109/JLT.1986.1074661

30. Desurvire, E., Erbium Doped Fiber Amplifiers: Principles and Applications, Wiley, New York, 1994.

31. Karimi, M., N. Granpayeh, and M. K. Moravvej Farshi, "Analysis and design of the dye doped polymer optical fiber amplifiers," Appl. Physics B, Vol. 78, 387-396, 2004.
doi:10.1007/s00340-003-1390-5

32. Brunet, F., Y. Taillon, P. Galarneau, and S. Larochelle, "Practical design of double-clad Ytterbium-doped fiber amplifiers using Giles parameters," IEEE J. Quant. Electron., Vol. 40, 1294-1300, 2004.
doi:10.1109/JQE.2004.833223

33. Yan, P., X. Wang, Y. Huang, C. Fu, J. Sun, Q. Xiao, D. Li, and M. Gong, "Fiber core mode leakage induced by refractive index variation in high-power fiber laser," Chin. Phys. B, Vol. 26, 034205, 2017.
doi:10.1088/1674-1056/26/3/034205

34. Agrawal, G. P., Fiber-optic Communication Systems, 3rd Ed., A John Wiley & Sons, Inc., 2002.
doi:10.1002/0471221147

35. Karimi, M., "Optimization of core size in erbium doped holey fiber amplifiers," Optik, Vol. 125, 2780-2783, 2014.
doi:10.1016/j.ijleo.2013.11.054

36. Prudenzano, F., "Erbium-doped hole-assisted optical fiber amplifier: Design and optimization," J. Ligthwave Technol., Vol. 23, 330-340, 2005.
doi:10.1109/JLT.2004.838808

37. Marcuse, D., "Loss analysis of single-mode fiber splices," The Bell System Technology Journal, Vol. 56, 703-718, 1977.
doi:10.1002/j.1538-7305.1977.tb00534.x

38. Leproux, P. and S. Fevrier, "Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of the pump," Optical Fiber Technol., Vol. 6, 324-339, 2001.
doi:10.1006/ofte.2001.0361

39. Kouznetsov, D. and J. V. Moloney, "Highly efficient, high-gain, short-length, and power-scalable incoherent diode slab-pumped fiber amplifier/laser," IEEE J. Quant. Electron., Vol. 39, 1452-1461, 2003.
doi:10.1109/JQE.2003.818311

40. Quintela, M. A., C. Lavin, M. Lomer, A. Quintela, and J. M. Lopez-Higuera, "Superfluorescent erbium doped fiber optic sources comparative study," Proc. of SPIE, Vol. 5952, 1-10, 2005.

41. Casperson, L. W. and A. Yariv, "Spectral narrowing in high-gain lasers," IEEE J. Quantum. Electron., Vol. 8, 80, 1972.
doi:10.1109/JQE.1972.1076944

42. Xiao, L., P. Yan, M. Gong, W. Wei, and P. Ou, "An approximate analytic solution of strongly pumped Yb-doped double-clad fiber lasers without neglecting the scattering loss," Opt. Commun., Vol. 230, 401-410, 2004.
doi:10.1016/j.optcom.2003.11.017

43. Pask, H. M., R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: Versatile sources for the 1-1.2 pm region," IEEE J. Selected Top. in Quant. Electron., Vol. 1, 2-13, 1995.
doi:10.1109/2944.468377

44. Lim, C. and Y. Izawa, "Modeling of end-pumped CW quasi-three-level lasers," IEEE J. Quant. Electron., Vol. 38, 306-311, 2002.
doi:10.1109/3.985572

45. Kong, F., C. Dunn, J. Parsons, M. T. Kalichevsky-Dong, T. W. Hawkins, M. Jones, and L. Dong, "Large-mode-area fibers operating near singlemode regime," Opt. Express, Vol. 24, 10295-10301, 2016.
doi:10.1364/OE.24.010295

46. Wielandy, S., "Implications of higher-order mode content in large mode area fibers with good beam quality," Opt. Express, Vol. 15, 15402-15409, 2016.
doi:10.1364/OE.15.015402

47. Snitzer, E., H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, "Double-clad, offset core Nd fiber laser," The Opt. Fiber Commun. Conf., New Orleans, LA, PD5, 1988.

48. Jauregui, C., H. J. Otto, S. Breitkopf, J. Limpert, and A. T¨unnermann, "Optimizing the mode instability threshold of high-power fiber laser systems," Proc. of SPIE, Fiber Lasers XIII: Technology, Systems, and Applications, Vol. 9728, 97280B, 2015.

49. Otto, H. J., N. Modsching, C. Jauregui, J. Limpert, and A. T¨unnermann, "Impact of photodarkening on the mode instability threshold," Opt. Express, Vol. 23, 15265-15277, 2015.
doi:10.1364/OE.23.015265

50. Jauregui, C., H. J. Ottoa, C. Stihler, J. Limpert, and A. Tunnermann, "The impact of core co-dopants on the mode instability threshold of high-power fiber laser systems," Proc. of SPIE, Fiber Lasers XIV: Technology and Systems, Vol. 10083, 100830N, 2017.

51. Li, J., K. Duan, Y. Wang, X. Cao, W. Zhao, Y. Guo, and X. Lin, "Theoretical analysis of the heat dissipation mechanism in Yb3+-doped double-clad fiber lasers," J. Modern Optic, Vol. 55, 459-471, 2008.
doi:10.1080/09500340701477784

52. Yan, P., A. Xu, and M. Gong, "Numerical analysis of temperature distributions in Yb-doped double-clad fiber lasers with consideration of radiative heat transfer," Opt. Engin., Vol. 45, 124201, 2006.
doi:10.1117/1.2402934

53. Davis, M. K., M. J. F. Digonnet, and R. H. Pantell, "Thermal effects in doped fibers," J. Lightwave Technol., Vol. 16, 1013-1013, 1998.
doi:10.1109/50.681458

54. Li, J., Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and Y. Liu, "Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser," Opt. Commun., Vol. 284, 1278-1283, 2011.
doi:10.1016/j.optcom.2010.10.062

55. Lapointe, M. A., S. Chatigny, M. Pich´e, M. C. Skaff, and J. N. Maran, "Thermal effects in high-power CW fiber lasers," Proc. SPIE Fiber Lasers VI: Technology, Systems, and Applications, Vol. 7195, 1U, 2009.

56. Jauregui, C., H. J. Otto, F. Stutzki, J. Limpert, and A. Tunnermann, "Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening," Opt. Express, Vol. 23, 20203-20218, 2015.
doi:10.1364/OE.23.020203

57. Lood, F. and N. P. Kherani, "Influence of luminescent material properties on stimulated emission luminescent solar concentrators (SELSCs) using a 4-level system," Opt. Express, Vol. 25, A1023, 2017.
doi:10.1364/OE.25.0A1023

58. Ward, B., "Theory and modeling of photodarkening induced quasi static degradation in fiber amplifiers," Opt. Express, Vol. 24, 3488-3501, 2016.
doi:10.1364/OE.24.003488

59. Kuznetsov, M. S., O. L. Antipov, A. A. Fotiadi, and P. Megret, "Electronic and thermal refractive index changes in Ytterbium-doped fiber amplifiers," Opt. Express, Vol. 21, 22374-22388, 2013.
doi:10.1364/OE.21.022374

60. Abouricha, M., A. Boulezhar, and N. Habiballah, "The comparative study of the temperature distribution of fiber laser with different pump schemes," O. J. Metal, Vol. 3, 64-71, 2013.
doi:10.4236/ojmetal.2013.34010

61. Naderi, S., I. Dajani, T. Madden, and C. Robin, "Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations," Opt. Express, Vol. 21, 16111-16129, 2013.
doi:10.1364/OE.21.016111

62. Hansen, K. R., T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, "Theoretical analysis of mode instability in high-power fiber amplifiers," Opt. Express, Vol. 21, 1944-1971, 2013.
doi:10.1364/OE.21.001944

63. Smith, A. V. and J. J. Smith, "Increasing mode instability thresholds of fiber amplifiers by gain saturation," Opt. Express, Vol. 21, 15168-15182, 2013.
doi:10.1364/OE.21.015168

64. Ward, B., C. Robin, and I. Dajani, "Origin of thermal modal instabilities in large mode area fiber amplifiers," Opt. Express, Vol. 2, 11407-11422, 2012.
doi:10.1364/OE.20.011407

65. Ward, B. G., "Accurate modeling of rod-type photonic crystal fiber amplifiers," Proc. of SPIE, Vol. 9728, 97280F-1, 2015.

66. Tao, R., P. Ma, X. Wang, P. Zhou, and Z. Liu, "1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities," Photon. Res., Vol. 3, 86-93, 2015.
doi:10.1364/PRJ.3.000086

67. Tao, R., X. Wang, P. Zhou, and Z. Liu, "Seed power dependence of mode instabilities in high power fiber amplifiers," J. Opt., 103667.R1, 2017.

68. Lægsgaard, J., "Static thermo-optic instability indouble-pass fiber amplifiers," Opt. Express, Vol. 24, 13429-13443, 2016.
doi:10.1364/OE.24.013429

69. Gong, M., Y. Yuan, C. Li, P. Yan, H. Zhang, and S. Liao, "Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers," Opt. Express, Vol. 15, 3236-3246, 2007.
doi:10.1364/OE.15.003236

70. Mohammed, Z., H. Saghafifar, and M. Soltanolkotabi, "An approximate analytical model for temperature and power distribution in high power Yb-doped double clad fiber lasers," Laser Phys., Vol. 24, 115107, 2014.
doi:10.1088/1054-660X/24/11/115107

71. Sabaeian, M., H. Nadgaran, M. De Sario, L. Mescia, and F. Prudenzano, "Thermal effects on double clad octagonal Yb:glass fiber laser," Optical Materials, Vol. 31, 1300-1305, 2009.
doi:10.1016/j.optmat.2008.10.034

72. Neumark, S., Solution of Cubic and Quartic Equations, 1st Ed., Pergam on Press, Oxford, London, 1965.

73. Kelson, I. and A. Hardy, "Optimization of strongly pumped fiber lasers," J. of Ligthwave Technol., Vol. 17, 891-897, 1999.
doi:10.1109/50.762908

74. Pask, H. M., R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: Versatile sources for the 1–1.2 pm region," IEEE J. of Quant. Electron., Vol. 1, 2-13, 1995.
doi:10.1109/2944.468377

75. Fan, Y., B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, "Thermal effects in kilowatt all-fiber MOPA," Opt. Express, Vol. 19, 15162-15172, 2011.
doi:10.1364/OE.19.015162