Vol. 88
Latest Volume
All Volumes
PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-11-28
Design and Experimental Verification of Adaptive Speed Region Control for Hybrid Excitation Claw-Pole Synchronous Machine
By
Progress In Electromagnetics Research C, Vol. 88, 195-205, 2018
Abstract
With combining the advantages of the hybrid excited synchronous machine and claw pole machine, hybrid excitation claw-pole synchronous machine (HECPSM) exhibits merits of controllable flux operation and independent flux paths. One novel wide range adaptive speed region control strategy is proposed in this paper, based on the analysis of the field control capability of HECPSM and the space vector control. Independent control methods of maximum torque per ampere (MTPA), space vector and minimum copper loss (MCL) control were employed for the proposed machine during three different speed regions in order to obtain satisfied performance in the whole speed range. The correctness and effectiveness of the proposed adaptive speed region control strategy and drive system design were verified by simulation and experimental results, which demonstrated that the proposed control strategy maximized the range of speed regulation while exhibiting the high efficiency.
Citation
Yang Zhang, Quanzhen Huang, Mingming Huang, Duane Decker, and Yuhao Qing, "Design and Experimental Verification of Adaptive Speed Region Control for Hybrid Excitation Claw-Pole Synchronous Machine," Progress In Electromagnetics Research C, Vol. 88, 195-205, 2018.
doi:10.2528/PIERC18092603
References

1. Spooner, E., S. W. Khatab, and N. G. Nicolaou, "Hybrid excitation of AC and DC machine," Proceedings of the International Conference on Electrical Machines and Drives, 1989 IEE Electrical Machines and Drives Conferenc, 48-52, 1989.

2. Chan, C. C., K. T. Chau, and J. Z. Jiang, "Novel permanent magnet motor drives for electric vehicles," IEEE Trans. Ind. Electr., Vol. 43, No. 2, 331-339, Apr. 1996.
doi:10.1109/41.491357

3. Peniak, A., J. Makarovic, P. Rafajdus, V. Vavrus, P. Makys, K. Buhr, and R. Fajtl, "Design and optimization of switched reluctance motor for electrical vehicles," Electr. Eng., Vol. 99, No. 4, 1393-1401, Jul. 2017.
doi:10.1007/s00202-017-0621-4

4. Fuchs, E. F. and M. H. Myat, "Speed and torque range increases of electric drives through compensation of flux weakening," 2010 Power Electronics, Electrical Drives, Automation and Motion Conference, 1569-1574, 2010.

5. Amara, Y., L. Vido, M. Gabsi, E. Hoang, and B. Hamid, "Hybrid excitation synchronous machines: Energy-efficient solution for vehicles propulsion," IEEE Trans. Veh. Technol., Vol. 58, No. 5, 2137-2149, Nov. 2009.
doi:10.1109/TVT.2008.2009306

6. Zhang, Z., Y. Yan, and S. Yang, "Principle of operation and feature investigation of a new topology of hybrid excitation synchronous machine," IEEE Trans. Magn., Vol. 44, No. 9, 2174-2180, Aug. 2008.
doi:10.1109/TMAG.2008.2000513

7. Lawler, J. S., J. Bailey, and J. McKeever, "Minimum current magnitude control of surface PM synchronous machines during constant power operation," IEEE Power Electr. Lett., Vol. 3, No. 2, 53-56, Jul. 2005.
doi:10.1109/LPEL.2005.848327

8. Liu, C. C., J. G. Zhu, Y. H. Wang, Y. G. Guo, and G. Lei, "Comparison of claw-pole machines with different rotor structures," IEEE Trans. Magn., Vol. 51, No. 11, 8110904, Jun. 2015.

9. Deodhar, R. P., A. Pride, and J. J. Bremner, "Design method and experimental verification of a novel technique for torque ripple reduction in stator claw-pole PM machines," IEEE Trans. Ind. Appl., Vol. 51, No. 5, 3743-3750, May 2015.
doi:10.1109/TIA.2015.2429647

10. Balagurov, B. A., "Electric generators with permanent magnets," Elektroatomizdat, 1988.

11. Chen, J. J. and K. P. Chin, "Minimum copper loss flux weakening control of surface mounted permanent magnet synchronous motors," IEEE Trans. Ind. Electr., Vol. 18, No. 4, 929-936, Jul. 2003.

12. Chan, C. C., R. Zhang, and K. T. Chau, "Optimal efficiency control of PM hybrid motor drives for electrical vehicles," 1997 Power Electronics Specialists Conference, 363-368, 1997.

13. Gabriele, B., F. G. Capponi, G. D. Donato, and F. Caricchi, "Closed-loop flux-weakening control of hybrid-excitation synchronous machine drives," IEEE Trans. Ind. Appl., Vol. 53, No. 2, 1116-1126, Dec. 2017.
doi:10.1109/TIA.2016.2639031

14. Chen, J. J., "Automatic flux-weakening control of permanent magnet synchronous motors using a reduced-order controller," IEEE Trans. Ind. Electr., Vol. 15, No. 5, 881-890, Sep. 2000.

15. Shinnaka, S., "New dynamic mathematical model and new dynamic vector simulators of hybrid-field synchronous motors," 2005 Electric Machines and Drives Conference, 882-889, 2005.
doi:10.1109/IEMDC.2005.195826

16. Shinnaka, S., "New optimal current control methods for energy-efficient and wide speed-range operation of hybrid-field synchronous motor," IEEE Trans. Ind. Electr., Vol. 54, No. 5, 2443-2450, Jul. 2007.
doi:10.1109/TIE.2007.900356

17. Huang, M. M., H. Y. Lin, Y. K. Huang, P. Jin, and Y. J. Guo, "Fuzzy control flux weakening of hybrid excitation synchronous motor based on particle swarm optimization algorithm," IEEE Trans. Magn., Vol. 48, No. 11, 2989-2992, Oct. 2012.
doi:10.1109/TMAG.2012.2196761

18. Zhang, Q. F. and S. M. Cui, "Hybrid switched reluctance motor applied in electric vehicle," 2007 IEEE Vehicle Power and Propulsion, 359-363, 2007.

19. Wang, Y. and Z. Deng, "Hybrid excitation topologies and control strategies of stator permanent magnet machines for DC power system," IEEE Trans. Ind. Electr., Vol. 59, No. 12, 4601-1615, Jan. 2012.
doi:10.1109/TIE.2012.2183842

20. Yang, C. F., H. Y. Lin, J. Guo, and Z. Q. Zhu, "Design and analysis of a novel hybrid excitation synchronous machine with asymmetrically stagger permanent magnet," IEEE Trans. Magn., Vol. 44, No. 11, 4353-4356, Dec. 2008.
doi:10.1109/TMAG.2008.2001325

21. Kaehler, C. and G. Henneberger, "Transient 3-D FEM computation of eddy-current losses in the rotor of a claw-pole alternator," IEEE Trans. Magn., Vol. 40, No. 2, 1362-1365, Apr. 2004.
doi:10.1109/TMAG.2004.825469

22. Mohammadi, A. S., J. P. Trovão, and R. D. Maxime, "Hybridisation ratio for hybrid excitation synchronous motors in electric vehicles with enhanced performance," IET Electr. Syst. Transp., Vol. 8, No. 1, 12-19, Feb. 2018.
doi:10.1049/iet-est.2017.0029

23. Zhang, Z. R., Y. Liu, B. Tian, and W. J. Wang, "Investigation and implementation of a new hybrid excitation synchronous machine drive system," IET Electr. Power Appl., Vol. 11, No. 4, 487-494, Apr. 2017.
doi:10.1049/iet-epa.2016.0542

24. Michal, B., "A gain-scheduled multivariable LQR controller for hybrid excitation synchronous machine," 2015 Methods and Models in Automation and Robotics Conference, 24-27, Sep. 2015.