Vol. 88
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-12-11
Wide-Band Dual Sense Circularly Polarized Resonant Cavity Antenna for X Band Applications
By
Progress In Electromagnetics Research C, Vol. 88, 285-295, 2018
Abstract
This paper presents the design and analysis of a wideband circularly polarized resonant cavity antenna (RCA). The antenna structure consists of dual-layer Jerusalem cross type partially reflective surface (PRS) above a two-port wideband circularly polarized patch antenna. The PRS enhances the gain of the feeding patch antenna over wide range of frequencies. The structure provides left hand as well as right hand circular polarizations. Parametric analysis of the structure is also presented. The measured 10 dB return loss bandwidth and 3 dB axial ratio bandwidth of the RCA are 25 % (8.24-10.63 GHz) and 28.8% (8.3 GHz-11.1 GHz), respectively. Isolation more than 10 dB is obtained for the frequency range 9.15-10.61 GHz. Measured results show peak realized gain of 9 dBi in the operating band.
Citation
Swati Vaid Ashok Mittal , "Wide-Band Dual Sense Circularly Polarized Resonant Cavity Antenna for X Band Applications," Progress In Electromagnetics Research C, Vol. 88, 285-295, 2018.
doi:10.2528/PIERC18100804
http://www.jpier.org/PIERC/pier.php?paper=18100804
References

1. Maqsood, M., S. Gao, T. W. C. Brown, M. Unwin, R. De Vos Van Steenwijk, and J. D. Xu, "A compact multipath mitigating ground plane for multiband GNSS antennas," IEEE Trans. Antennas Propag., Vol. 61, 2775-2782, 2013.
doi:10.1109/TAP.2013.2243692

2. Ram Krishna, R. V. S., R. Kumar, and N. Kushwaha, "A circularly polarized slot antenna for high gain applications," Int. J. Electron. Commun. (AEU), Vol. 68, 1119-1128, 2014.
doi:10.1016/j.aeue.2014.05.018

3. Kushwaha, N. and R. Kumar, "Design of a wideband high gain antenna using FSS for circularly polarized applications," Int. J. Electron. Commun. (AEU), Vol. 70, 1156-1163, 2016.
doi:10.1016/j.aeue.2016.05.013

4. Vaid, S. and A. Mittal, "High gain planar resonant cavity antennas based on metamaterial and frequency selective surfaces," Int. J. Electron. Commun. (AEU), Vol. 69, 1387-1392, 2015.
doi:10.1016/j.aeue.2015.05.014

5. Diblanc, M., E. Rodes, E. Arnaud, M. Thevenot, T. Monediere, and B. Jecko, "Circularly polarized metallic EBG antenna," IEEE Microw. Wirel. Compon. Lett., Vol. 15, 638-640, 2005.
doi:10.1109/LMWC.2005.856689

6. Arnaud, E., R. Chantalat, M. Koubeissi, T. Monediere, E. Rodes, and M. Thevenot, "Global design of an EBG antenna and meander-line polarizer for circular polarization," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 215-218, 2010.
doi:10.1109/LAWP.2010.2045098

7. Chiu, S.-C. and S.-Y. Chen, "High-gain circularly polarized resonant cavity antenna using FSS superstrate," IEEE Int. Symposium Antennas Propag. Society (APSURSI), 2242-2245, 2011.

8. Chiu, S.-C. and S.-Y. Chen, "Circularly polarized resonant cavity antenna using single-layer double-sided FSS superstrate," IEEE Int. Symposium Antennas Propag. Society (APSURSI), 1-2, 2012.

9. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Single-layer circular polarizer using metamaterial and its application in antenna," Microw. Opt. Technol. Lett., Vol. 54, 1770-1774, 2012.
doi:10.1002/mop.26884

10. Orr, R., G. Goussetis, and V. Fusco, "Design method for circularly polarized Fabry-Perot cavity antennas," IEEE Trans. Antennas Propag., Vol. 62, 19-26, 2013.
doi:10.1109/TAP.2013.2286839

11. Liu, Z.-G., Z.-X. Cao, and L.-N. Wu, "Compact low-profile circularly polarized Fabry-Perot resonator antenna fed by linearly polarized microstrip patch," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 524-527, 2016.
doi:10.1109/LAWP.2015.2456886

12. Muhammad, S. A., R. Sauleau, G. Valerio, L. Le Coq, and H. Legay, "Self-polarizing Fabry-Perot antennas based on polarization twisting element," IEEE Trans. Antennas Propag., Vol. 61, 1032-1040, 2013.
doi:10.1109/TAP.2012.2227443

13. Lee, D. H., Y. J. Lee, J. Yeo, R. Mittra, and P. Wee Sang, "Directivity enhancement of circular polarized patch antenna using ring-shaped frequency selective surface superstrate," Microw. Opt. Technol. Lett., Vol. 49, 199-201, 2007.
doi:10.1002/mop.22084

14. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 431-434, 2014.
doi:10.1109/LAWP.2014.2308926

15. Ju, J. and D. Kim, "Circularly-polarised high gain cavity antenna based on sequentially rotated phase feeding," Electron. Lett., Vol. 49, 1198-1200, 2013.
doi:10.1049/el.2013.1543

16. Cao, T., Y. Li, X. Zhang, and Y. Zou, "Theoretical study of tunable chirality from graphene integrated achiral metasurfaces," Photonics Research, Vol. 5, No. 5, 441-449, 2017.
doi:10.1364/PRJ.5.000441

17. Cao, T., C. Wei, and Y. Li, "Dual-band strong extrinsic 2D chirality in a highly symmetric metal-dielectric-metal achiral metasurface," Optical Materials Express, Vol. 6, 303-311, 2016.
doi:10.1364/OME.6.000303

18. Cao, T., C. Wei, L. B. Mao, and S. Wang, "Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene," Optics Express, Vol. 23, 18620-18629, 2015.
doi:10.1364/OE.23.018620

19. Cao, T., C. Wei, L. B. Mao, and Y. Li, "Extrinsic 2D chirality: Giant circular conversion dichroism from a metal-dielectric-metal square array," Scientific Reports, Vol. 4, 7442, 2014.

20. Cao, T., C. Wei, and L. Zhang, "Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials," Optical Materials Express, Vol. 4, 1526-1534, 2014.
doi:10.1364/OME.4.001526

21. Cao, T. and M. J. Cryan, "Enhancement of circular dichroism by a planar non-chiral magnetic metamaterial," Journal of Optics, Vol. 14, 085101, 2012.
doi:10.1088/2040-8978/14/8/085101

22. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two complementary FSS layers," IEEE Trans. Antennas Propag., Vol. 62, 2463-2471, 2014.
doi:10.1109/TAP.2014.2308533

23. Ge, Y., K. P. Esselle, and T. S. Bird, "The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Trans. Antennas Propag., Vol. 60, 743-750, 2012.
doi:10.1109/TAP.2011.2173113

24. Qin, F., S. Gao, G. Wei, Q. Luo, C. Mao, C. Gu, J. Xu, and J. Li, "Wideband circularly polarized Fabry-Perot antenna," IEEE Antennas Propag. Magazine, Vol. 57, 127-135, 2015.
doi:10.1109/MAP.2015.2470678

25. Vaid, S. and A. Mittal, "Wideband orthogonally polarized resonant cavity antenna with dual layer jerusalem cross partially reflective surface," Progress In Electromagnetics Research C, Vol. 72, 105-113, 2017.
doi:10.2528/PIERC17011103

26. Costa, F., A. Monorchio, and G. Manara, "Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model," IEEE Antennas Propag. Magazine, Vol. 54, 35-48, 2012.
doi:10.1109/MAP.2012.6309153

27. Hosseini, M. and M. Hakkak, "Characteristics estimation for Jerusalem cross-based artificial magnetic conductors," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 58-61, 2008.
doi:10.1109/LAWP.2008.917605