1. Maqsood, M., S. Gao, T. W. C. Brown, M. Unwin, R. De Vos Van Steenwijk, and J. D. Xu, "A compact multipath mitigating ground plane for multiband GNSS antennas," IEEE Trans. Antennas Propag., Vol. 61, 2775-2782, 2013.
doi:10.1109/TAP.2013.2243692 Google Scholar
2. Ram Krishna, R. V. S., R. Kumar, and N. Kushwaha, "A circularly polarized slot antenna for high gain applications," Int. J. Electron. Commun. (AEU), Vol. 68, 1119-1128, 2014.
doi:10.1016/j.aeue.2014.05.018 Google Scholar
3. Kushwaha, N. and R. Kumar, "Design of a wideband high gain antenna using FSS for circularly polarized applications," Int. J. Electron. Commun. (AEU), Vol. 70, 1156-1163, 2016.
doi:10.1016/j.aeue.2016.05.013 Google Scholar
4. Vaid, S. and A. Mittal, "High gain planar resonant cavity antennas based on metamaterial and frequency selective surfaces," Int. J. Electron. Commun. (AEU), Vol. 69, 1387-1392, 2015.
doi:10.1016/j.aeue.2015.05.014 Google Scholar
5. Diblanc, M., E. Rodes, E. Arnaud, M. Thevenot, T. Monediere, and B. Jecko, "Circularly polarized metallic EBG antenna," IEEE Microw. Wirel. Compon. Lett., Vol. 15, 638-640, 2005.
doi:10.1109/LMWC.2005.856689 Google Scholar
6. Arnaud, E., R. Chantalat, M. Koubeissi, T. Monediere, E. Rodes, and M. Thevenot, "Global design of an EBG antenna and meander-line polarizer for circular polarization," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 215-218, 2010.
doi:10.1109/LAWP.2010.2045098 Google Scholar
7. Chiu, S.-C. and S.-Y. Chen, "High-gain circularly polarized resonant cavity antenna using FSS superstrate," IEEE Int. Symposium Antennas Propag. Society (APSURSI), 2242-2245, 2011. Google Scholar
8. Chiu, S.-C. and S.-Y. Chen, "Circularly polarized resonant cavity antenna using single-layer double-sided FSS superstrate," IEEE Int. Symposium Antennas Propag. Society (APSURSI), 1-2, 2012. Google Scholar
9. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Single-layer circular polarizer using metamaterial and its application in antenna," Microw. Opt. Technol. Lett., Vol. 54, 1770-1774, 2012.
doi:10.1002/mop.26884 Google Scholar
10. Orr, R., G. Goussetis, and V. Fusco, "Design method for circularly polarized Fabry-Perot cavity antennas," IEEE Trans. Antennas Propag., Vol. 62, 19-26, 2013.
doi:10.1109/TAP.2013.2286839 Google Scholar
11. Liu, Z.-G., Z.-X. Cao, and L.-N. Wu, "Compact low-profile circularly polarized Fabry-Perot resonator antenna fed by linearly polarized microstrip patch," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 524-527, 2016.
doi:10.1109/LAWP.2015.2456886 Google Scholar
12. Muhammad, S. A., R. Sauleau, G. Valerio, L. Le Coq, and H. Legay, "Self-polarizing Fabry-Perot antennas based on polarization twisting element," IEEE Trans. Antennas Propag., Vol. 61, 1032-1040, 2013.
doi:10.1109/TAP.2012.2227443 Google Scholar
13. Lee, D. H., Y. J. Lee, J. Yeo, R. Mittra, and P. Wee Sang, "Directivity enhancement of circular polarized patch antenna using ring-shaped frequency selective surface superstrate," Microw. Opt. Technol. Lett., Vol. 49, 199-201, 2007.
doi:10.1002/mop.22084 Google Scholar
14. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 431-434, 2014.
doi:10.1109/LAWP.2014.2308926 Google Scholar
15. Ju, J. and D. Kim, "Circularly-polarised high gain cavity antenna based on sequentially rotated phase feeding," Electron. Lett., Vol. 49, 1198-1200, 2013.
doi:10.1049/el.2013.1543 Google Scholar
16. Cao, T., Y. Li, X. Zhang, and Y. Zou, "Theoretical study of tunable chirality from graphene integrated achiral metasurfaces," Photonics Research, Vol. 5, No. 5, 441-449, 2017.
doi:10.1364/PRJ.5.000441 Google Scholar
17. Cao, T., C. Wei, and Y. Li, "Dual-band strong extrinsic 2D chirality in a highly symmetric metal-dielectric-metal achiral metasurface," Optical Materials Express, Vol. 6, 303-311, 2016.
doi:10.1364/OME.6.000303 Google Scholar
18. Cao, T., C. Wei, L. B. Mao, and S. Wang, "Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene," Optics Express, Vol. 23, 18620-18629, 2015.
doi:10.1364/OE.23.018620 Google Scholar
19. Cao, T., C. Wei, L. B. Mao, and Y. Li, "Extrinsic 2D chirality: Giant circular conversion dichroism from a metal-dielectric-metal square array," Scientific Reports, Vol. 4, 7442, 2014. Google Scholar
20. Cao, T., C. Wei, and L. Zhang, "Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials," Optical Materials Express, Vol. 4, 1526-1534, 2014.
doi:10.1364/OME.4.001526 Google Scholar
21. Cao, T. and M. J. Cryan, "Enhancement of circular dichroism by a planar non-chiral magnetic metamaterial," Journal of Optics, Vol. 14, 085101, 2012.
doi:10.1088/2040-8978/14/8/085101 Google Scholar
22. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two complementary FSS layers," IEEE Trans. Antennas Propag., Vol. 62, 2463-2471, 2014.
doi:10.1109/TAP.2014.2308533 Google Scholar
23. Ge, Y., K. P. Esselle, and T. S. Bird, "The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Trans. Antennas Propag., Vol. 60, 743-750, 2012.
doi:10.1109/TAP.2011.2173113 Google Scholar
24. Qin, F., S. Gao, G. Wei, Q. Luo, C. Mao, C. Gu, J. Xu, and J. Li, "Wideband circularly polarized Fabry-Perot antenna," IEEE Antennas Propag. Magazine, Vol. 57, 127-135, 2015.
doi:10.1109/MAP.2015.2470678 Google Scholar
25. Vaid, S. and A. Mittal, "Wideband orthogonally polarized resonant cavity antenna with dual layer jerusalem cross partially reflective surface," Progress In Electromagnetics Research C, Vol. 72, 105-113, 2017.
doi:10.2528/PIERC17011103 Google Scholar
26. Costa, F., A. Monorchio, and G. Manara, "Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model," IEEE Antennas Propag. Magazine, Vol. 54, 35-48, 2012.
doi:10.1109/MAP.2012.6309153 Google Scholar
27. Hosseini, M. and M. Hakkak, "Characteristics estimation for Jerusalem cross-based artificial magnetic conductors," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 58-61, 2008.
doi:10.1109/LAWP.2008.917605 Google Scholar