1. Northover, F. H., "The diffraction of electromagnetic waves around a finite, perfectly conducting cone Pt. 1. The mathematical solution," Journal of Mathematical Analysis and Applications, Vol. 10, 37-49, 1965. Google Scholar
2. Northover, F. H., "The diffraction of electric waves around a finite, perfectly conducting cone Pt. 2. The field singularities," Journal of Mathematical Analysis and Applications, Vol. 10, 50-69, 1965. Google Scholar
3. Syed, A., "The diffraction of arbitrary electromagnetic field by a finite perfectly conducting cone," Journal of Natural Sciences and Mathematics, Vol. 2, No. 1, 85-114, 1981. Google Scholar
4. Daniele, V. and R. Zich, The Wiener-Hopf Method in Electromagnetics, ISMB Series, SCITECH Publishing, 2014.
5. Mittra, R. and S.-W. Lee, Analytical Techniques in the Theory of Guided Waves, Macmillan, 1971.
6. Kobayashi, K., "Some diffraction problems involving modified Wiener-Hopf geometries," Analytical and Numerical Methods in Electromagnetic Wave Theory, M. Hashimoto, M. Idemen, O. A. Tretyakov, Eds., Science House Co., Ltd., Tokyo, 1993. Google Scholar
7. Demir, A., A. Buyukaksoy, and B. Polat, "Diffraction of plane waves by a rigid circular cylindrical cavity with an acoustic absorbing internal surface," Zeitschrift f¨ur Angewandte Mathematik und Mechanik, Vol. 82, No. 9, 619-629, 2002. Google Scholar
8. Kuryliak, D. B., K. Kobayashi, S. Koshikawa, and Z. T. Nazarchuk, "Wiener-Hopf analysis of the diffraction by circular waveguide cavities," Journal of the Institute of Science and Engineering, Vol. 10, 45-52, Tokyo (Japan), 2005. Google Scholar
9. Kobayashi, K. and S. Koshikawa, "Diffraction by a parallel-plate waveguide cavity with a thick planar termination," IEICE Transactions on Electronics, Vol. E76-C, No. 1, 42-158, 1993. Google Scholar
10. Kuryliak, D. B., S. Koshikawa, K. Kobayashi, and Z. T. Nazarchuk, "Wiener-Hopf analysis of the axial symmetric wave diffraction problem for a circular waveguide cavity," International Workshop on Direct and Inverse Wave Scattering, 2-67-2-81, Gebze (Turkey), 2000. Google Scholar
11. Bazer, J. and S. Karp, "Potential flow through a conical pipe with an application to diffraction theory," Research Report No. EM-66, Courant Institute of Mathematical Sciences, New York University in New York, 1954. Google Scholar
12. Vaisleib, Y. V., "Axially-symmetric illumination of the perfectly conducting finite cone," Proceedings of Educational Institutes of Communications, Vol. 35, 58-66, 1967. Google Scholar
13. Pridmore-Brown, D. C., "A Wiener-Hopf solution of a radiation problem in conical geometry," Journal of Mathematical Physics, Vol. 47, 79-94, 1968. Google Scholar
14. Kuryliak, D. B. and Z. T. Nazarchuk, "Analytical-numerical Methods in the Theory of Wave Diffraction on Conical and Wedge-shaped Surfaces,", 2006 (in Ukrainian). Google Scholar
15. Kuryliak, D. B., S. Koshikawa, K. Kobayashi, and Z. T. Nazarchuk, "Diffraction by a truncated, semi-infinite cone: Comparison of the Wiener-Hopf technique and semi-inversion methods," PIERS Proceedings, Vol. 321, Hawaii, October 2003. Google Scholar
16. Noble, B., Method Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations, Pergamon Press, 1958.
17. Belichenko, V. P., "Finite integral transformation and factorization methods for electro-dynamics and electrostatic problems," Mathematical Methods for Electrodynamics Boundary Value Problems, V. P. Belichenko, G. G. Goshin, A. G. Dmitrienko, et al., Eds., Izd. Tomsk. Univ., Tomsk, 1990 (in Russian). Google Scholar
18. Naylor, D., "On a finite Lebedev transform," Journal of Mathematics and Mechanics, Vol. 12, No. 3, 375-383, 1963. Google Scholar
19. Kuryliak, D. B., "Axially-symmetric field of electric dipole over truncated cone. I comparison between mode-matching technique and integral transformation method," Radio Physics and Radio Astronomy, Vol. 4, No. 2, 121-128, 1999 (in Russian). Google Scholar
20. Kuryliak, D. B., "Axially-symmetric field of electric dipole over truncated cone. II. Numerical Modeling," Radio Physics and Radio Astronomy, Vol. 5, No. 3, 284-290, 2000 (in Russian). Google Scholar
21. Kuryliak, D. B., "Dual series equation of the associate Legendre functions for conical and spherical regions and its application for the scalar diffraction problems," Reports of the National Academy of Sciences of Ukraine, No. 10, 70-78, 2000 (in Russian). Google Scholar
22. Kuryliak, D. B. and Z. T. Nazarchuk, "Dual series equations for the wave diffraction by conical edge," Reports of the National Academy of Sciences of Ukraine, No. 11, 103-111, 2000. Google Scholar
23. Kuryliak, D. B. and Z. T. Nazarchuk, "Convolution type operators for wave diffraction by conical surfaces," Radio Science, Vol. 43, No. 4, 2008, doi: 10.1029/2007RS003792. Google Scholar
24. Kuryliak, D. and V. Lysechko, "Acoustic plane wave diffraction from a truncated semi-infinite cone in axial irradiation," Journal of Sound and Vibration, Vol. 409, 81-93, 2017. Google Scholar
25. Kuryliak, D. B., Z. T. Nazarchuk, and O. B. Trishchuk, "Axially-symmetric TM-waves diffraction by sphere-conical cavity," Progress In Electromagnetics Research B, Vol. 73, 1-16, 2017. Google Scholar
26. Hobson, E., Theory of Spherical and Ellipsoidal Harmonics, Izdatelstvo Inostrannoy Literaturi, 1952.
27. Gradshtein, I. S. and I. M. Ryzhik, Tables of Integrals, Series, and Products, Gosudarstvennoe Izdatelstvo Fiziko-Matematiceskoj Literatury, 1963.
28. Vinogradov, S. S., P. D. Smith, and E. D. Vinogradova, Canonical Problems in Scattering and Potential Theory Part II: Acoustic and Electromagnetic Diffraction by Canonical Structures, Chapman and Hall/CRC, 2002.