Vol. 85
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-06-17
Performance Analysis of Refined Induction Machine Models Considering Iron Loss
By
Progress In Electromagnetics Research Letters, Vol. 85, 31-36, 2019
Abstract
In the applications such as induction motor efficiency optimization and electric vehicle speed control, the influence of the iron loss cannot be ignored in order to improve the running efficiency of induction motor, the ordinary differential equations (ODE) and difference equations (DE) of induction motors considering iron loss have been established. The results show that the proposed refined ordinary differential equations and difference equations of induction motors considering iron loss and its simulation models are believable, and simulated and experiment results have demonstrated that the models perform well.
Citation
Wan Jun Yin, and Tao Wen, "Performance Analysis of Refined Induction Machine Models Considering Iron Loss," Progress In Electromagnetics Research Letters, Vol. 85, 31-36, 2019.
doi:10.2528/PIERL18111601
References

1. Li, J., F. F. Xiao, and S. Q. Zhang, "Simplified loss model control efficiency optimization algorithm for vector control induction motor drives," IECON 2017 --- 43rd Annual Conference of the IEEE Industrial Electronics Society, 5178-5183, Beijing, 2017.
doi:10.1109/IECON.2017.8216895

2. Li, J., W. Wang, and Y. R. Zhong, "Joint simulation method of PSIM+Matlab for power electronic systems ," Power Electronics, Vol. 44, No. 5, 86-88, May 2010 (in Chinese).

3. Li, Z., Y. Jiang, and Q. Guo, "Multi-dimensional variational mode decomposition for bearing-crack detection in wind turbines with large driving-speed variations ," Renewable Energy, Vol. 116, Part B, 55-73, 2016, DOI: 10.1016/j.renene.2016.12.013.

4. Glowacz, A., "Acoustic based fault diagnosis of three-phase induction motor," Applied Acoustics, Vol. 137, 82-89, 2018, DOI:10.1016/j.apacoust.2018.03.010.
doi:10.1016/j.apacoust.2018.03.010

5. Werner, U., "Vibration control of large induction motors using actuators between motor feet and steel frame," Mechanical Systems and Signal Processing, Vol. 112, 319-342, 2018, DOI: 10.1016/j.ymssp.2018.04.033.
doi:10.1016/j.ymssp.2018.04.033

6. Caesarendra, W. A., "Review of feature extraction methods in vibration-based condition monitoring and its application for degradation trend estimation of low-speed slew bearing," Machines, Vol. 5, No. 4, 2017, DOI:10.3390/machines5040021.
doi:10.3390/machines5040021

7. Glowacz, A., "Acoustic-based fault diagnosis of commutator," Motor Electronics, Vol. 7, No. 11, 2018, DOI: 10.3390/electronics7110299.

8. Singh, G., "Detection of half broken rotor bar fault in VFD driven induction motor drive using motor square," Mechanical Systems and Signal Processing, Vol. 110, 333-348, 2018, DOI: 10.1016/j.yrrissp.2018.03.001.
doi:10.1016/j.ymssp.2018.03.001

9. Pang, B., G. Tang, and T. Tian, "Rolling bearing fault diagnosis based on an improved HTT transform ," Sensors, Vol. 18, No. 4, 2018, DOI: 10.3390/s18041203.
doi:10.3390/s18040966

10. Glowacz, A. and W. Glowacz, "Vibration-based fault diagnosis of commutator," Motor Shock and Vibration, Vol. 2018, Article ID 7460419, 10 pages, 2018, DOI: 10.1155/2018/7460419.

11. Fernandes, J. D., "Wireless monitoring of induction machine rotor physical variables," Sensors, Vol. 17, No. 11, 2017, DOI: 10.3390/s17112660.