1. Jiao, L. and F. Liu, "Wishart deep stacking network for fast PolSAR image classification," IEEE Transactions on Image Processing, Vol. 25, 3273-3286, 2016.
doi:10.1109/TIP.2016.2567069 Google Scholar
2. Scheuchl, B., D. Flett, R. Caves, and I. Cumming, "Potential of RADARSAT-2 data for operational sea ice monitoring," Canadian Journal of Remote Sensing, Vol. 30, No. 3, 448-461, 2004.
doi:10.5589/m04-011 Google Scholar
3. Wang, L., K. A. Scott, L. Xu, et al. "Sea ice concentration estimation during melt from dualpol SAR scenes using deep convolutional neural networks: A case study," IEEE Transactions on Geoscience & Remote Sensing, Vol. 54, No. 8, 4524-4533, 2016.
doi:10.1109/TGRS.2016.2543660 Google Scholar
4. Freeman, A., J. Villasenor, J. D. Klein, et al. "On the use of multi-frequency and polarimetric radar backscatter features for classification of agricultural crops," International Journal of Remote Sensing, Vol. 15, No. 9, 14, 1994. Google Scholar
5. Lee, J. S. and M. R. Grunes, "Classification of multi-look polarimetric SAR data based on complex Wishart distribution," National Telesystems Conference, IEEE, 1992. Google Scholar
6. Gao, W., J. Yang, and W. Ma, "Land cover classification for polarimetric SAR images based on mixture models," Remote Sensing, Vol. 6, No. 5, 3770-3790, 2014.
doi:10.3390/rs6053770 Google Scholar
7. Rignot, E. and R. Chellappa, "Segmentation of polarimetric synthetic aperture radar data," IEEE Transactions on Image Processing, Vol. 1, No. 3, 281-300, 1992.
doi:10.1109/83.148603 Google Scholar
8. Lee, J. S., D. L. Schuler, R. H. Lang, et al. "K-distribution for multi-look processed polarimetric SAR imagery," International Geoscience & Remote Sensing Symposium, IEEE, 1994. Google Scholar
9. Freitas, C. C., A. C. Frery, and A. H. Correia, "The polarimetric distribution for sar data analysis," Environmetrics, Vol. 16, No. 1, 13-31, 2010.
doi:10.1002/env.658 Google Scholar
10. Chen, Q., G. Kuang, J. Li, et al. "Unsupervised land cover/land use classification using PolSAR imagery based on scattering similarity," IEEE Transactions on Geoscience & Remote Sensing, Vol. 51, No. 3, 1817-1825, 2013.
doi:10.1109/TGRS.2012.2205389 Google Scholar
11. Wang, Y., C. Han, and F. Tupin, "PolSAR data segmentation by combining tensor space cluster analysis and Markovian framework," IEEE Geoscience & Remote Sensing Letters, Vol. 7, No. 1, 210-214, 2010.
doi:10.1109/LGRS.2009.2031660 Google Scholar
12. Shang, F. and A. Hirose, "Quaternion neural-network-based PolSAR land classification in Poincaresphere-parameter space," IEEE Transactions on Geoscience & Remote Sensing, Vol. 52, No. 9, 5693-5703, 2014.
doi:10.1109/TGRS.2013.2291940 Google Scholar
13. Yu, P., A. K. Qin, and D. A. Clausi, "Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty," IEEE Transactions on Geoscience & Remote Sensing, Vol. 50, No. 4, 1302-1317, 2012.
doi:10.1109/TGRS.2011.2164085 Google Scholar
14. Cao, F., W. Hong, Y. Wu, and E. Pottier, "An unsupervised segmentation with an adaptive number of clusters using the SPAN/H/α/A space and the complex Wishart clustering for fully polarimetric SAR data analysis," IEEE Transactions on Geoscience & Remote Sensing, Vol. 45, No. 11, 3454-3467, 2007.
doi:10.1109/TGRS.2007.907601 Google Scholar
15. Wu, Y., K. Ji, W. Yu, and Y. Su, "Region-based classification of polarimetric SAR images using Wishart MRF," IEEE Geoscience & Remote Sensing Letters, Vol. 5, No. 4, 668-672, 2008.
doi:10.1109/LGRS.2008.2002263 Google Scholar
16. Hou, B., H. Kou, and L. Jiao, "Classification of polarimetric SAR images using multilayer autoencoders and superpixels," IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, Vol. 9, No. 7, 3072-3081, 2017.
doi:10.1109/JSTARS.2016.2553104 Google Scholar
17. Krizhevsky, A., I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Proc. Adv. Neural Inf. Process. Syst., 1097-1105, 2012. Google Scholar
18. He, K., X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification, 2015.
19. Li, Q., W. Cai, X. Wang, et al. "Medical image classification with convolutional neural network," International Conference on Control Automation Robotics and Vision, 844-848, IEEE, 2014. Google Scholar
20. Chen, S., H. Wang, F. Xu, and Y.-Q. Jin, "Target classification using the deep convolutional networks for SAR images," IEEE Transactions on Geoscience & Remote Sensing, Vol. 54, No. 8, 4806-4817, 2016.
doi:10.1109/TGRS.2016.2551720 Google Scholar
21. Zhou, Y., H. Wang, F. Xu, and Y.-Q. Jin, "Polarimetric SAR image classification using deep convolutional neural networks," IEEE Geoscience & Remote Sensing Letters, Vol. 13, No. 12, 1935-1939, 2016.
doi:10.1109/LGRS.2016.2618840 Google Scholar
22. Hirose, A., Complex-Valued Neural Networks: Advances and Applications, Wiley, 2013.
doi:10.1002/9781118590072
23. Zhang, Z., H. Wang, F. Xu, et al. "Complex-valued convolutional neural network and its application in polarimetric SAR image classification," IEEE Transactions on Geoscience & Remote Sensing, Vol. 99, 1-12, 2017. Google Scholar
24. Zeiler, M. D., G. W. Taylor, R. Fergus, et al. "Adaptive deconvolutional networks for mid and high level featurelearning," International Conference on Computer Vision, 2018-2025, 2011. Google Scholar
25. Ren, X. and J. Malik, "Learning a classification model for segmentation," International Conference on Computer Vision, Vol. 1, 10-17, 2003. Google Scholar
26. Cloude, S. R. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Transactions on Geoscience & Remote Sensing, Vol. 34, No. 2, 498-518, 1996.
doi:10.1109/36.485127 Google Scholar
27. Zhu, B., J. Z. Liu, S. F. Cauley, et al. "Image reconstruction by domain-transform manifold learning," Nature, 2017. Google Scholar
28. Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, Vol. 86, No. 11, 2278-2324, 1998.
doi:10.1109/5.726791 Google Scholar
29. Zhang, Y., W. Miao, Z. Lin, H. Gao, and S. Shi, "Millimeter-wave InSAR image reconstruction approach by total variation regularized matrix completion," Remote Sens., Vol. 10, 1053, 2018.
doi:10.3390/rs10071053 Google Scholar