1. Pappas, O., A. Achim, and D. Bull, "Superpixel-level CFAR detectors for ship detection in SAR imagery," IEEE Geosci. Remote Sens. Lett., Vol. 15, No. 9, 1397-1401, 2018.
doi:10.1109/LGRS.2018.2838263
2. Gao, G., S. Gao, J. He, and G. Li, "Adaptive ship detection in hybrid-polarimetric SAR images based on the powerCentropy decomposition," IEEE Trans. Geosci. Remote Sens., Vol. 56, No. 9, 5394-5407, 2018.
doi:10.1109/TGRS.2018.2815592
3. Leng, X., K. Ji, X. Xing, S. Zhou, and H. Zou, "Area ratio invariant feature group for ship detection in SAR imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 11, No. 7, 2376-2388, 2018.
doi:10.1109/JSTARS.2018.2820078
4. Ai, J., X. Yang, J. Song, Z. Dong, L. Jia, and F. Zhou, "An adaptively truncated clutter-statistics-based two-parameter CFAR detector in SAR imagery," IEEE J. Oceanic Eng., Vol. 43, No. 1, 267-279, 2018.
doi:10.1109/JOE.2017.2768198
5. Li, T., Z. Liu, R. Xie, and L. Ran, "An improved superpixel-level CFAR detection method for ship targets in high-resolution SAR images," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 11, No. 1, 184-194, 2018.
doi:10.1109/JSTARS.2017.2764506
6. Gao, G., S. Gao, J. He, and G. Li, "Ship detection using compact polarimetric SAR based on the notch filter," IEEE Trans. Geosci. Remote Sens., Vol. 56, No. 9, 5380-5393, 2018.
doi:10.1109/TGRS.2018.2815582
7. Zhan, Y., D. Hu, Y. Wang, and X. Yu, "Semisupervised hyperspectral image classification based on generative adversarial networks," IEEE Geosci. Remote Sens. Lett., Vol. 15, No. 2, 212-216, 2018.
doi:10.1109/LGRS.2017.2780890
8. Ghamisi, P., J. Benediktsson, and M. Ulfarsson, "Spectral-spatial classification of hyperspectral images based on hidden markov random fields," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 5, 2565-2574, 2016.
doi:10.1109/TGRS.2013.2263282
9. Gao, G., Characterization of SAR Clutter and Its Applications to Land and Ocean Observations, Springer, 2019.
doi:10.1007/978-981-13-1020-1