Vol. 83
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-04-04
A Novel Method of Ship Detection in High-Resolution SAR Images Based on GaN and HMRF Models
By
Progress In Electromagnetics Research Letters, Vol. 83, 77-82, 2019
Abstract
This research proposes a novel method based on generative adversarial network (GAN) and hidden Markov random field (HMRF) models, for use in large-scale high-resolution synthetic aperture radar (SAR) images. The method consists of three stages. In the first stage, a virtual target and a SAR image are generated by using the GAN model, according to the statistical and gray-level features of the original SAR image used in detection. In the second stage, the virtual target is embedded in the generated image. In the third stage, real targets are detected in the generated image by using the HMRF model. The experiment results show that the proposed algorithm based on GAN and HMRF models can be applied to ship detection in high-resolution SAR images, with high accuracy and processing speed.
Citation
Meng Yang, and Chenchen Yi, "A Novel Method of Ship Detection in High-Resolution SAR Images Based on GaN and HMRF Models," Progress In Electromagnetics Research Letters, Vol. 83, 77-82, 2019.
doi:10.2528/PIERL19012502
References

1. Pappas, O., A. Achim, and D. Bull, "Superpixel-level CFAR detectors for ship detection in SAR imagery," IEEE Geosci. Remote Sens. Lett., Vol. 15, No. 9, 1397-1401, 2018.
doi:10.1109/LGRS.2018.2838263

2. Gao, G., S. Gao, J. He, and G. Li, "Adaptive ship detection in hybrid-polarimetric SAR images based on the powerCentropy decomposition," IEEE Trans. Geosci. Remote Sens., Vol. 56, No. 9, 5394-5407, 2018.
doi:10.1109/TGRS.2018.2815592

3. Leng, X., K. Ji, X. Xing, S. Zhou, and H. Zou, "Area ratio invariant feature group for ship detection in SAR imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 11, No. 7, 2376-2388, 2018.
doi:10.1109/JSTARS.2018.2820078

4. Ai, J., X. Yang, J. Song, Z. Dong, L. Jia, and F. Zhou, "An adaptively truncated clutter-statistics-based two-parameter CFAR detector in SAR imagery," IEEE J. Oceanic Eng., Vol. 43, No. 1, 267-279, 2018.
doi:10.1109/JOE.2017.2768198

5. Li, T., Z. Liu, R. Xie, and L. Ran, "An improved superpixel-level CFAR detection method for ship targets in high-resolution SAR images," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 11, No. 1, 184-194, 2018.
doi:10.1109/JSTARS.2017.2764506

6. Gao, G., S. Gao, J. He, and G. Li, "Ship detection using compact polarimetric SAR based on the notch filter," IEEE Trans. Geosci. Remote Sens., Vol. 56, No. 9, 5380-5393, 2018.
doi:10.1109/TGRS.2018.2815582

7. Zhan, Y., D. Hu, Y. Wang, and X. Yu, "Semisupervised hyperspectral image classification based on generative adversarial networks," IEEE Geosci. Remote Sens. Lett., Vol. 15, No. 2, 212-216, 2018.
doi:10.1109/LGRS.2017.2780890

8. Ghamisi, P., J. Benediktsson, and M. Ulfarsson, "Spectral-spatial classification of hyperspectral images based on hidden markov random fields," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 5, 2565-2574, 2016.
doi:10.1109/TGRS.2013.2263282

9. Gao, G., Characterization of SAR Clutter and Its Applications to Land and Ocean Observations, Springer, 2019.
doi:10.1007/978-981-13-1020-1