1. Benedetti, M., M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, "An innovative microwave imaging technique for nondestructive evaluation: Applications to civil structures monitoring and biological bodies inspection," IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 6, 1878-1884, 2006.
doi:10.1109/TIM.2006.884287 Google Scholar
2. Yemelyanov, K. M., N. Engheta, A. Hoorfar, and J. A. McVay, "Adaptive polarization contrast techniques for through-wall microwave imaging applications," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1362-1374, 2009.
doi:10.1109/TGRS.2009.2015569 Google Scholar
3. Woodhouse, I. H., Introduction to Microwave Remote Sensing, CRC Press, 2017.
doi:10.1201/9781315272573
4. Wagner, W., G. Bloschl, P. Pampaloni, J.-C. Calvet, B. Bizzarri, J.-P. Wigneron, and Y. Kerr, "Operational readiness of microwave remote sensing of soil moisture for hydrologic applications," Nordic Hydrology, Vol. 38, No. 1, 1-20, 2007.
doi:10.2166/nh.2007.029 Google Scholar
5. Chandra, R., H. Zhou, I. Balasingham, and R. M. Narayanan, "On the opportunities and challenges in microwave medical sensing and imaging," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 7, 1667-1682, 2015.
doi:10.1109/TBME.2015.2432137 Google Scholar
6. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759 Google Scholar
7. Beada'a, J. M., A. M. Abbosh, S. Mustafa, and D. Ireland, "Microwave system for head imaging," IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 1, 117, 2014.
doi:10.1109/TIM.2013.2277562 Google Scholar
8. Mojabi, P. and J. LoVetri, "Eigenfunction contrast source inversion for circular metallic enclosures," Inverse Problems, Vol. 26, No. 2, 025010, 2010.
doi:10.1088/0266-5611/26/2/025010 Google Scholar
9. Gilmore, C. and J. LoVetri, "Enhancement of microwave tomography through the use of electrically conducting enclosures," Inverse Problems, Vol. 24, No. 3, 035008, 2008.
doi:10.1088/0266-5611/24/3/035008 Google Scholar
10. Nemez, K., A. Baran, M. Asefi, and J. LoVetri, "Modeling error and calibration techniques for a faceted metallic chamber formagnetic field microwave imaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4347-4356, 2017.
doi:10.1109/TMTT.2017.2694823 Google Scholar
11. Pastorino, M., "Microwave Imaging," John Wiley & Sons, Vol. 208, 2010. Google Scholar
12. Chen, X., Computational Methods for Electromagnetic Inverse Scattering, Wiley Online Library, 2018.
doi:10.1002/9781119311997
13. De Zaeytijd, J., A. Franchois, C. Eyraud, and J.-M. Geffrin, "Full-wave three-dimensional microwave imaging with a regularized Gauss-Newton method --- Theory and experiment," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 11, 3279-3292, 2007.
doi:10.1109/TAP.2007.908824 Google Scholar
14. Souvorov, A. E., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, A. G. Nazarov, Y. E. Sizov, and G. P. Tatsis, "Microwave tomography: A two-dimensional newton iterative scheme," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 11, 1654-1659, 1998.
doi:10.1109/22.734548 Google Scholar
15. Rubæk, T., P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using Gauss-Newton's method and the CGLS inversion algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2320-2331, 2007.
doi:10.1109/TAP.2007.901993 Google Scholar
16. Harada, H., D. J. Wall, T. Takenaka, and M. Tanaka, "Conjugate gradient method applied to inverse scattering problem," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 8, 784-792, 1995.
doi:10.1109/8.402197 Google Scholar
17. Franchois, A. and A. Tijhuis, "A quasi-Newton reconstruction algorithm for a complex microwave imaging scanner environment," Radio Science, Vol. 38, No. 2, 1-12, 2003.
doi:10.1029/2001RS002590 Google Scholar
18. Kleinman, R. and P. van den Berg, "A modified gradient method for two-dimensional problems in tomography," Journal of Computational and Applied Mathematics, Vol. 42, No. 1, 17-35, 1992.
doi:10.1016/0377-0427(92)90160-Y Google Scholar
19. Caorsi, S., A. Massa, M. Pastorino, and A. Rosani, "Microwave medical imaging: Potentialities and limitations of a stochastic optimization technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1909-1916, 2004.
doi:10.1109/TMTT.2004.832016 Google Scholar
20. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Vol. 93, Springer Science & Business Media, 2012.
21. Tikhonov, A. N., "Solution of incorrectly formulated problems and the regularization method," Soviet Math. Dokl., Vol. 4, 1035-1038, 1963. Google Scholar
22. Hansen, P. C., "The truncated SVD as a method for regularization," BIT Numerical Mathematics, Vol. 27, No. 4, 534-553, 1987.
doi:10.1007/BF01937276 Google Scholar
23. Xu, P., "Truncated SVD methods for discrete linear ill-posed problems," Geophysical Journal International, Vol. 135, No. 2, 505-514, 1998.
doi:10.1046/j.1365-246X.1998.00652.x Google Scholar
24. Hansen, P. C., "Regularization, GSVD and truncated GSVD," BIT Numerical Mathematics, Vol. 29, No. 3, 491-504, 1989.
doi:10.1007/BF02219234 Google Scholar
25. Hansen, P. C., T. Sekii, and H. Shibahashi, "The modified truncated SVD method for regularization in general form," SIAM Journal on Scientific and Statistical Computing, Vol. 13, No. 5, 1142-1150, 1992.
doi:10.1137/0913066 Google Scholar
26. Hansen, P. C., "Analysis of discrete ill-posed problems by means of the L-curve," SIAM Review, Vol. 34, No. 4, 561-580, 1992.
doi:10.1137/1034115 Google Scholar
27. Hansen, P. C. and D. P. O'Leary, "The use of the L-curve in the regularization of discrete ill-posed problems," SIAM Journal on Scientific Computing, Vol. 14, No. 6, 1487-1503, 1993.
doi:10.1137/0914086 Google Scholar
28. Mojabi, P. and J. LoVetri, "Overview and classification of some regularization techniques for the Gauss-Newton inversion method applied to inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2658-2665, 2009.
doi:10.1109/TAP.2009.2027161 Google Scholar
29. Scapaticci, R., I. Catapano, and L. Crocco, "Wavelet-based adaptive multiresolution inversion for quantitative microwave imaging of breast tissues," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3717-3726, 2012.
doi:10.1109/TAP.2012.2201083 Google Scholar
30. Scapaticci, R., P. Kosmas, and L. Crocco, "Wavelet-based regularization for robust microwave imaging in medical applications," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 4, 1195-1202, 2015.
doi:10.1109/TBME.2014.2381270 Google Scholar
31. Winters, D. W., J. D. Shea, P. Kosmas, B. D. van Veen, and S. C. Hagness, "Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions," IEEE Transactions on Medical Imaging, Vol. 28, No. 7, 969-981, 2009.
doi:10.1109/TMI.2008.2008959 Google Scholar
32. Grote, M. J., M. Kray, and U. Nahum, "Adaptive eigenspace method for inverse scattering problems in the frequency domain," Inverse Problems, Vol. 33, No. 2, 025006, 2017.
doi:10.1088/1361-6420/aa5250 Google Scholar
33. Gilmore, C., P. Mojabi, A. Zakaria, S. Pistorius, and J. LoVetri, "On super-resolution with an experimental microwave tomography system," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 393-396, 2010.
doi:10.1109/LAWP.2010.2049471 Google Scholar
34. Asefi, M., G. Faucher, and J. LoVetri, "Surface-current measurements as data for electromagnetic imaging within metallic enclosures," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 11, 4039-4047, 2016.
doi:10.1109/TMTT.2016.2605665 Google Scholar
35. Jeffrey, I., A. Zakaria, and J. LoVetri, "Microwave imaging by mixed-order discontinuous Galerkin contrast source inversion," 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), 1-4, IEEE, 2014. Google Scholar
36. Jeffrey, I., N. Geddert, K. Brown, and J. LoVetri, "The time-harmonic discontinuous Galerkin method as a robust forward solver for microwave imaging applications," Progress In Electromagnetics Research, Vol. 154, 1-21, 2015.
doi:10.2528/PIER15090403 Google Scholar
37. Den Dekker, A. and A. van den Bos, "Resolution: A survey," JOSA A, Vol. 14, No. 3, 547-557, 1997.
doi:10.1364/JOSAA.14.000547 Google Scholar
38. Born, M., E. Wolf, A. B. Bhatia, et al. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Vol. 7, Cambridge University Press, 1999.
doi:10.1017/CBO9781139644181
39. Zakaria, A., C. Gilmore, and J. LoVetri, "Finite-element contrast source inversion method for microwave imaging," Inverse Problems, Vol. 26, No. 11, 115010, 2010.
doi:10.1088/0266-5611/26/11/115010 Google Scholar
40. Abdollahi, N., I. Jeffrey, and J. LoVetri, "A non-iterative eigenfunction-based 3D inverse solver for microwave imaging," Second URSI Atlantic Radio Science Meeting Science General Assembly (URSI-ATRASC), 2018. Google Scholar