Vol. 93
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-06-20
Anti-Interference Circuit Configuration for Concurrent Dual-Band Operation in High-Efficiency GaN HEMT Power Amplifier
By
Progress In Electromagnetics Research C, Vol. 93, 199-209, 2019
Abstract
An interference on a concurrent 4.5-/8.5-GHz-band operation has been effectively suppressed by applying a duplexer technique to high-efficiency GaN HEMT power amplifiers. Each harmonic was also suppressed by a harmonic reactive termination used for a high-efficiency operation. The developed concurrent dual-band amplifier delivered a 73% drain efficiency and a 61% power-added-efficiency (PAE) with 32 dBm output power at 8.24 GHz and a 69% drain efficiency and a 64% PAE with 37 dBm output power at 4.70 GHz. Undesired cross-modulation and intermodulation signals at nearby bands occurring due to dual-band interaction have been successfully suppressed to less than -41 dBc.
Citation
Haruka Nishizawa, Yoichiro Takayama, Ryo Ishikawa, and Kazuhiko Honjo, "Anti-Interference Circuit Configuration for Concurrent Dual-Band Operation in High-Efficiency GaN HEMT Power Amplifier," Progress In Electromagnetics Research C, Vol. 93, 199-209, 2019.
doi:10.2528/PIERC19041302
References

1. Raab, F., "Class-F power amplifiers with maximally flat waveforms," IEEE Trans. Microw. Theory Techn., Vol. 45, No. 11, 2007-2012, 2007.
doi:10.1109/22.644215

2. Sokal, N. and A. Sokal, "Class E --- A new class of high-efficiency tuned single-ended switching power amplifiers," IEEE J. Solid-State Circuits, Vol. SSC-10, No. 3, 168-176, 1975.
doi:10.1109/JSSC.1975.1050582

3. Wright, P., J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A methodology for realizing high efficiency class-J in a linear and broadband PA," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 12, 3196-3204, 2009.
doi:10.1109/TMTT.2009.2033295

4. Kamiyama, M., R. Ishikawa, and K. Honjo, "5.65 GHz high-efficiency GaN HEMT power amplifier with harmonics treatment up to fourth order," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 6, 315-317, 2012.
doi:10.1109/LMWC.2012.2197385

5. Enomoto, J., R. Ishikawa, and K. Honjo, "Second harmonic treatment technique for bandwidth enhancement of GaN HEMT amplifier with harmonic reactive terminations," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 12, 4947-4952, 2017.
doi:10.1109/TMTT.2017.2704931

6. Rawat, K. and F. M. Ghannouchi, "Dual-band matching technique based on dual-characteristic impedance transformers for dual-band power amplifiers design," IET Microw., Antennas Propag., Vol. 5, No. 14, 1720-1729, 2011.
doi:10.1049/iet-map.2011.0099

7. Ji, S. H., C. S. Cho, J. W. Lee, and J. Kim, "Concurrent dual-band class-E power amplifier using composite right/left-handed transmission line," IEEE Trans. Microw. Theory Techn., Vol. 55, No. 6, 1341-1347, 2007.
doi:10.1109/TMTT.2007.895236

8. Enomoto, J., R. Ishikawa, and K. Honjo, "A 2.1/2.6 GHz dual-band high-efficiency GaN HEMT amplifier with harmonic reactive terminations," Proc. European Microw. Conf., 1488-1491, 2014.

9. Takayama, Y., K. Uchida, T. Fujita, and K. Maenaka, "Microwave dual-band power amplifiers using two-frequency matching," Electron. Commun. Jpn. Part II Electron., Vol. 89, No. 5, 17-24, 2006.
doi:10.1002/ecjb.20234

10. Enomoto, J., H. Nishizawa, R. Ishikawa, Y. Takayama, and K. Honjo, "Parallel combination of high-efficiency amplifiers with spurious rejection for concurrent multiband operation," Proc. European Microw. Conf., 1075-1078, 2016.

11. Ishikawa, R., Y. Takayama, and K. Honjo, "Concurrent dual-band access GaN HEMT MMIC amplifier suppressing inter-band interference," IEEE Int. Microw. Symp. Dig., 2045-2048, 2017.

12. Wu, P.-S., T.-W. Huang, and H. Wang, "An 18-71 GHz multi-band and high gain GaAs MMIC medium power amplifier for millimeter-wave applications," IEEE MTT-S Int. Microw. Symp. Dig., 863-865, 2003.

13. Lin, Y.-T. and S.-S. Lu, "A 2.4/3.5/4.9/5.2/5.7-GHz concurrent multi-band low noise amplifier using InGaP/GaAs HBT technology," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 10, 463-465, 2004.
doi:10.1109/LMWC.2004.834548

14. Maas, S. A., Nonlinear Microwave and RF Circuits, 2nd Ed., Artech House, Boston, London, 2003.

15. Maruyama, A., Y. Takayama, R. Ishikawa, and K. Honjo, "Linearity improvement for single-GaN HEMT dual-band power amplifier in concurrent operation mode," Proc. Asia-Pacific Microw. Conf., 995-998, 2017.

16. Gao, S., Z. Wang, and C.-W. Park, "Concurrent dual-band power amplifier with second harmonic controlled by gate and drain bias circuit," Proc. IEEE Int. Conf. Microw. Tech. and Computational Electromagnetics, 309-312, 2011.

17. Liu, R., D. Schreurs, W. D. Raedt, F. Vanaverbeke, and R. Mertens, "Concurrent dual-band power amplifier with different operation modes," IEEE Int. Microw. Symp. Dig., 2011, DOI: 10.1109/MWSYM.2011.5972698.

18. Chen, X., W. Chen, F. M. Ghannouchi, and Z. Feng, "A novel design method of concurrent dual-band power amplifiers including impedance tuning at inter-band modulation frequencies," IEEE Int. Microw. Symp. Dig., 2013, DOI: 10.1109/MWSYM.2013.6697505.

19. Zhu, S.-K., H.-P. Fu, H.-F. Wu, and J.-G. Ma, "A highly e±cient concurrent dual-band class-F power amplifier for applications at 1.7 and 2.14 GHz," IEEE Int. Microw. Symp. Dig., 2015, DOI: 10.1109/MWSYM.2015.7166915.

20. Pang, J., S. He, C. Huang, Z. Dai, C. Li, and J. Peng, "A novel design of concurrent dual-band high efficiency power amplifiers with harmonic control circuits," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 2, 137-139, 2016.
doi:10.1109/LMWC.2016.2517334

21. Li, Y., B. J. Montgomery, and N. M. Neihart, "Development of a concurrent dual-band switch-mode power amplifier based on current-switching class-D configuration," Proc. IEEE 17th Annual Wireless and Microw. Tech. Conf., 2016, DOI: 10.1109/WAMICON.2016.7483846.