1. Singh, H., S. Antony, and R. M. Jha, Plasma-Based Radar Cross Section Reduction, Springer, Singapore 2016.
2. Vidmar, R., "On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers," IEEE Transactions on Plasma Science, Vol. 18, No. 4, 733-741, 1990.
doi:10.1109/27.57528 Google Scholar
3. Stalder, K. R., R. J. Vidmar, and D. J. Eckstrom, "Observations of strong microwave absorption in collisional plasmas with gradual density gradients," Journal of Applied Physics, Vol. 72, No. 11, 5089-5094, 1992.
doi:10.1063/1.352038 Google Scholar
4. Srivastava, A. K., G. Prasad, P. K. Atrey, and V. Kumar, "Attenuation of microwaves propagating through parallel-plate helium glow discharge at atmospheric pressure," Journal of Applied Physics, Vol. 103, No. 3, 033302, 2008.
doi:10.1063/1.2838199 Google Scholar
5. Yin, X., H. Zhang, S.-J. Sun, Z. Zhao, and Y.-L. Hu, "Analysis of propagation and polarization characteristics of electromagnetic waves through nonuniform magnetized plasma slab using propagator matrix method," Progress In Electromagnetics Research, Vol. 137, 159-186, 2013.
doi:10.2528/PIER13010410 Google Scholar
6. Hu, B. J., G. Wei, and S. L. Lai, "SMM analysis of reflection, absorption, and transmission from nonuniform magnetized plasma slab," IEEE Transactions on Plasma Science, Vol. 27, No. 4, 1131-1136, 1999.
doi:10.1109/27.782293 Google Scholar
7. Yee, K., "Numerical solution of initial boundary value problems involving maxwells equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
8. Huang, S. and F. Li, "Finite-difference time-domain simulation of electromagnetic propagation in magnetized plasma," Computer Physics Communications, Vol. 166, No. 1, 45-52, 2005.
doi:10.1016/j.cpc.2004.10.007 Google Scholar
9. Jiang, Z., X. Hu, M. Liu, C. Lan, S. Zhang, Y. He, and Y. Pan, "Attenuation and propagation of a scattered electromagnetic wave in two-dimensional atmospheric pressure plasma," Plasma Sources Science and Technology, Vol. 16, No. 1, 97-103, Dec. 2006.
doi:10.1088/0963-0252/16/1/013 Google Scholar
10. Chung, S. M., "FDTD simulations on radar cross sections of metal cone and plasma covered metal cone," Vacuum, Vol. 86, No. 7, 970-984, 2012.
doi:10.1016/j.vacuum.2011.08.016 Google Scholar
11. Chaudhury, B. and S. Chaturvedi, "Three-dimensional computation of reduction in radar cross section using plasma shielding," IEEE Transactions on Plasma Science, Vol. 33, No. 6, 2027-2034, 2005.
doi:10.1109/TPS.2005.860122 Google Scholar
12. Chaudhury, B. and S. Chaturvedi, "Study and optimization of plasma-based radar cross section reduction using three-dimensional computations," IEEE Transactions on Plasma Science, Vol. 37, No. 11, 2116-2127, 2009.
doi:10.1109/TPS.2009.2032331 Google Scholar
13. Chaudhury, B. and S. Chaturvedi, "Comparison of wave propagation studies in plasmas using three-dimensional finite-difference time-domain and ray-tracing methods," Physics of Plasmas, Vol. 13, No. 12, 123302, 2006.
doi:10.1063/1.2397582 Google Scholar
14. Luebbers, R. J., F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 1, 29-34, 1991.
doi:10.1109/8.64431 Google Scholar
15. Luebbers, R. J. and F. Hunsberger, "FDTD for Nth-order dispersive media," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 11, 1297-1301, 1992.
doi:10.1109/8.202707 Google Scholar
16. Hunsberger, F., R. Luebbers, and K. Kunz, "Finite-difference time-domain analysis of gyrotropic media. I. Magnetized plasma," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 12, 1489-1495, 1992.
doi:10.1109/8.204739 Google Scholar
17. Kelley, D. and R. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 6, 792-797, 1996.
doi:10.1109/8.509882 Google Scholar
18. Liu, S. and S. Zhong, "FDTD study on scattering for conducting target coated with magnetized plasma of time-varying parabolic density distribution," Progress In Electromagnetics Research M, Vol. 22, 13-25, 2012.
doi:10.2528/PIERM11083109 Google Scholar
19. Sullivan, D., "Frequency-dependent FDTD methods using Z transforms," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 10, 1223-1230, 1992.
doi:10.1109/8.182455 Google Scholar
20. Sullivan, D., "Z-transform theory and the FDTD method," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 1, 28-34, 1996.
doi:10.1109/8.477525 Google Scholar
21. Kashiwa, T. and I. Fukai, "A treatment by the FD-TD method of the dispersive characteristics associated with electronic polarization," Microwave and Optical Technology Letters, Vol. 3, No. 6, 203-205, 1990.
doi:10.1002/mop.4650030606 Google Scholar
22. Joseph, R., S. Hagness, and A. Taflove, "Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses," Optics Letters, Vol. 16, No. 18, 1412-1414, 1991.
doi:10.1364/OL.16.001412 Google Scholar
23. Gandhi, O. P., B. Q. Gao, and J. Y. Chen, "A frequency-dependent finite-difference time-domain formulation for general dispersive media," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 4, 658-665, 1993.
doi:10.1109/22.231661 Google Scholar
24. Laroussi, M. and J. Roth, "Numerical calculation of the reflection, absorption, and transmission of microwaves by a nonuniform plasma slab," IEEE Transactions on Plasma Science, Vol. 21, No. 4, 366-372, 1993.
doi:10.1109/27.234562 Google Scholar
25. Petrin, A., "On the transmission of microwaves through plasma layer," IEEE Transactions on Plasma Science, Vol. 28, No. 3, 1000-1008, 2000.
doi:10.1109/27.887768 Google Scholar
26. Tang, D., A. Sun, X. Qiu, and P. Chu, "Interaction of electromagnetic waves with a magnetized nonuniform plasma slab," IEEE Transactions on Plasma Science, Vol. 31, No. 3, 405-410, 2003.
doi:10.1109/TPS.2003.811648 Google Scholar
27. Foroutan, V., M. N. Azarmanesh, and G. Foroutan, "FDTD simulation of radar cross section reduction by a collisional inhomogeneous magnetized plasma," Physics of Plasmas, Vol. 25, No. 2, 2018.
doi:10.1063/1.5018314 Google Scholar
28. Chung, S. S. M. and Y. C. Chuang, "Simulation on change of generic satellite radar cross section via artificially created plasma sprays," Plasma Sources Science and Technology, Vol. 25, No. 3, 2016.
doi:10.1088/0963-0252/25/3/035004 Google Scholar
29. Kunz, K. S. and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, 1993.
30. Goldston, R. J. and P. H. Rutherford, Introduction to Plasma Physics, IOP, 1995.
doi:10.1887/075030183X
31. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2000.
32. Inan, U. S., "Numerical Electromagnetics: The FDTD Method," Cambridge University Press, 2011. Google Scholar