Vol. 85
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-06-24
Design and Development of a d -Band Corrugated Horn Antenna for Millimeter-Wave Plasma Diagnostics
By
Progress In Electromagnetics Research Letters, Vol. 85, 101-108, 2019
Abstract
In fusion reaction, plasma parameters such as the density and temperature of electrons should be diagnosed continuously. There are various methods to diagnose plasma parameters. In these, reflectometry systems are widely used to measure the electron density and plasma physics study. In reflectometry systems, antenna plays an important role as a transmitter/receiver element. This paper presents the design of a D-band (110-170 GHz) corrugated horn antenna suitable for reflectometry system. The simulated results for antenna are compared with that of the measurements. Further, different structures are proposed to ease fabrication complexities and reduce cost.
Citation
Gupta Jay Vishnu, Dhaval A. Pujara, and Hitesh Pandya, "Design and Development of a d -Band Corrugated Horn Antenna for Millimeter-Wave Plasma Diagnostics," Progress In Electromagnetics Research Letters, Vol. 85, 101-108, 2019.
doi:10.2528/PIERL19042601
References

1. Laviron, C., A. J. H. Donne, M. E. Manso, and J. Sanchez, "Reflectometry techniques for density profile measurements on fusion plasmas," Plasma Physics and Controlled Fusion, Vol. 38, 905, 1996.
doi:10.1088/0741-3335/38/7/002

2. Conway, G. D., "Microwave reflectometry for fusion plasma diagnosis," Nucl. Fus., Vol. 46, S665-S669, 2006.
doi:10.1088/0029-5515/46/9/S01

3. Sakaguchi, M., H. Idei, T. Saito, and T. Shigematsu, "Development of full D-band corrugated horn antenna for ECRH system," Plasma and Fusion Research, Vol. 8, 1405163-1405163, 2013.
doi:10.1585/pfr.8.1405163

4. Olver, A. D., P. J. B. Clarricoats, A. A. Kishk, and L. Shafai, Microwave Horns and Feeds, IEE, London, 1994.
doi:10.1049/PBEW039E

5. Schorr, M. G. and J. F. J. Beck, "Electromagnetic field of a conical horn," Appl. Phys. J., Vol. 21, 795-801, 1950.
doi:10.1063/1.1699761

6. Balanis, C. A., Antenna Theory, Wiley, New York, NY, USA, 1997.

7. Potter, P. D., "A new horn antenna with suppressed sidelobes and equal beamwidths," Microw. J., Vol. 6, 71-78, 1961.

8. Simons, A. J. and A. F. Kay, "The scalar feed --- A high performance feed for large paraboloid reflectors," Design and Construction of Large Steerable Aerials, Vol. 21, 213-217, 1966.

9. Clarricoats, P. J. B., A. D. Olver, and M. S. A. S. Rizk, "A dielectric loaded conical feed with low crosspolar radiation," Proc. URSI Symp. Electromagn. Theory, 351-354, 1983.

10. Chung, J. Y., "Ultra-wideband dielectric-loaded horn antenna with dual-linear polarization capability," Progress In Electromagnetics Research, Vol. 102, 397-411, 2010.
doi:10.2528/PIER10022703

11. Lier, E., "Hybrid-mode horn antenna with design-specific aperture distribution and gain," Antennas and Propagation Society International Symposium, 502-505, 2003.

12. Hwang, R. B., H. W. Liu, and C. Y. Chin, "A metamaterial-based E-plane horn antenna," Progress In Electromagnetics Research, Vol. 93, 275-289, 2009.
doi:10.2528/PIER09050606

13. Cupido, L., E. De la Luna, C. Antonucci, A. Guigon, F. J. van Amerongen, W. A. Bongers, A. J. H. Donne, et al. "New millimeter-wave access for JET reflectometry and ECE," Fusion Engineering and Design, Vol. 74, 707-713, 2005.
doi:10.1016/j.fusengdes.2005.06.312

14. McElhinney, P., C. R. Donaldson, L. Zhang, and W. He, "A high directivity broadband corrugated horn for W-band gyro-devices," IEEE Transactions on Antennas and Propagation, Vol. 61, 1453-1456, 2013.
doi:10.1109/TAP.2012.2228840

15. Teniente, J., D. Goni, R. Gonzalo, and C. del-Rio, "Choked Gaussian antenna: Extremely low sidelobe compact antenna design," IEEE Antennas and Wireless Propagation Letters, Vol. 1, 200-202, 2002.
doi:10.1109/LAWP.2002.807959

16. Granet, C., T. S. Bird, and G. L. James, "Comments on choked Gaussian antenna: Extremely low sidelobe compact antenna design," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 363-364, 2003.
doi:10.1109/LAWP.2003.820716

17. Teniente, J., A. Martinez, B. Larumbe, A. Ibanez, and R. Gonzalo, "Design guidelines of horn antennas that combine horizontal and vertical corrugations for satellite communications," IEEE Transactions on Antennas and Propagation, Vol. 63, 1314-1323, 2015.
doi:10.1109/TAP.2015.2390630

18. Gibson, H. J., B. Thomas, L. Rolo, M. C. Wiedner, A. E. Maestrini, and P. De. Maagt, "A novel spline-profile diagonal horn suitable for integration into THz split-block components," IEEE Transactions on Terahertz Science and Technology, Vol. 7, 657-663, 2017.
doi:10.1109/TTHZ.2017.2752423

19. Jyoti, R., S. Chakrabarty, R. Dey, and T. Kurian, "Synthesis and analysis of multi-mode profile horn using mode matching technique and evolutionary algorithm," IET Microwaves, Antennas and Propagation, Vol. 1, 276-282, 2016.

20. Vishnu, G. J., S. Chaudhary, and D. A. Pujara, "Performance comparison of a corrugated horn with a spline profile horn for plasma diagnostics," 2017 Nirma University International Conference on Engineering (NUiCONE), 1-4, 2017.

21. Stix, T. H., Waves in Plasmas, Springer Science & Business Media, 1992.

22. Thompson, W. B., An Introduction to Plasma Physics, Elsevier, 2013.

23. James, G. L., "Analysis and design of TE11-to-HE11 corrugated cylindrical waveguide mode converters," IEEE Transactions on Microwave Theory and Techniques, Vol. 29, 1059-1066, 1981.
doi:10.1109/TMTT.1981.1130499

24. Granet, C. and G. L. James, "Design of corrugated horns: A primer," IEEE Antennas and Propagation Magazine, Vol. 47, 76-84, 2005.
doi:10.1109/MAP.2005.1487785

25. Pujara, D. A., "Project report: Design, fabrication and testing of a corrugated horn antenna for millimeter wave plasma diagnostics,", Board of Research in Nuclear Sciences, Department of Atomic Energy, 2019.

26. Wylde, R. J., "Millimetre-wave Gaussian beam-mode optics and corrugated feed horns," IEE Proceedings H (Microwaves, Optics and Antennas), Vol. 131, 258-262, IET Digital Library, 1984.
doi:10.1049/ip-h-1.1984.0053