1. Technical specification group radio access network; evolved universal terrestrial radio access (EUTRA); base station (BS) radio transmission and reception, version (release 9) Third Generation Partnership Project(3GPP); TS 36.104 V12.7.0; 2015. IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 81–87, 2017.
2. Yu, L., J. D. Song, Y. Gao, K. He, and F. Gao, "Low-profile dual-polarized omnidirectional antenna for broadband indoor distributed antenna system," Progress In Electromagnetics Research Letters, Vol. 67, 39-45, 2017.
doi:10.2528/PIERL17021704 Google Scholar
3. Zhang, Y. W., S. Lin, S. Yu, S. L. Liu, G. J. Liu, and A. Denisov, "A dual-polarized omnidirectional antenna with two kinds of printed wideband low-profile radiating elements," Progress In Electromagnetics Research Letters, Vol. 80, 149-157, 2018.
doi:10.2528/PIERL18111904 Google Scholar
4. Bai, X., M. Su, Z. D. Gao, and Y. A. Liu, "Broadband dual-polarized omnidirectional antenna based on magnetic dipoles," IEICE Electronics Express, Vol. 15, No. 5, 1-8, 2018.
doi:10.1587/elex.15.20171149 Google Scholar
5. Bhadoria, B. and S. Kumar, "A novel omnidirectional triangular patch antenna array using Dolph- Chebyshev current distribution for C-band applications," Progress In Electromagnetics Research M, Vol. 71, 75-84, 2018.
doi:10.2528/PIERM18051402 Google Scholar
6. Puente, C., C. Borja, A. Teillet, D. Kirchoffer, and J. Anguera, Slim triple band antenna array for cellular base stations, US Patent 8,497,814.
7. Barba, M., "A high-isolation, wideband and dual-linear polarization patch antenna," IEEE Trans. Antennas Propag., Vol. 56, No. 5, 1472-1476, 2008.
doi:10.1109/TAP.2008.922889 Google Scholar
8. Koohestani, M., A. A. Moreira, A. K. Skrivervik, and A. M. Kasgari, "A novel compact CPW-fed polarization diversity ultrawideband antenna," IEEE Antennas Wireless Propag. Lett., Vol. 13, No. 13, 563-566, 2014.
doi:10.1109/LAWP.2014.2312730 Google Scholar
9. Pattnaik, S., S. S. Behera, and S. Sahu, "Design of a new compact UWB polarization diversity antenna with stepped CPW-feed," India Conf., 1-4, 2016. Google Scholar
10. Chacko, B. P., G. Augustin, and T. A. Denidni, "Electronically reconfigurable uniplanar antenna with polarization diversity for cognitive radio applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 213-216, 2015.
doi:10.1109/LAWP.2014.2360353 Google Scholar
11. Yahya, R., A. Nakamura, M. Itami, and T. A. Denidni, "A novel UWB FSS-based polarization diversity antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, No. 1, 2525-2528, 2017.
doi:10.1109/LAWP.2017.2730161 Google Scholar
12. Dai, X. W., Z. Y. Wang, C. H. Liang, X. Chen, and L. T. Wang, "Multiband and dual-polarized omnidirectional antenna for 2G/3G/LTE application," IEEE Antennas Wireless Propag. Lett., Vol. 12, No. 3, 1492-1495, 2013.
doi:10.1109/LAWP.2013.2289743 Google Scholar
13. Jolani, F., Y. Yu, and Z. Chen, "A novel broadband omnidirectional dual polarized mimo antenna for 4G LTE applications," Proc.Int. Wireless Symp., 1-4, 2014. Google Scholar
14. Huang, H., Y. Liu, and S. Gong, "Broadband dual-polarized omnidirectional antenna for 2G/3G/LTE/WiFi applications," IEEE Antennas Wireless Propag. Lett., Vol. 15, 576-579, 2016.
doi:10.1109/LAWP.2015.2458981 Google Scholar
15. Wu, J., S. Yang, Y. Chen, S. Qu, and Z. Nie, "A low profile dualpolarized wideband omnidirectional antenna based on AMC reflector," IEEE Trans. Antennas Propag., Vol. 65, No. 1, 368-374, 2017.
doi:10.1109/TAP.2016.2631147 Google Scholar
16. Guo, D., K. He, Y. Zhang, and M. Song, "A multiband dual-polarized omnidirectional antenna for indoor wireless communication systems," IEEE Antennas Wireless Propag. Lett., Vol. 16, No. 99, 290-293, 2017.
doi:10.1109/LAWP.2016.2573840 Google Scholar
17. Zhao, Z. T., J. X. Lai, B. T. Feng, and C. Y. D. Sim, "A dual-polarized dual-Band antenna with high gain for 2G/3G/LTE indoor communications," IEEE Access, Vol. 6, 61622-61632, 2018. Google Scholar
18. Quan, X. L. and R. L. Li, "A broadband dual-polarized omnidirectional antenna for base stations," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 943-947, 2013.
doi:10.1109/TAP.2012.2223450 Google Scholar
19. Lai, J. W., C. L. Tang, S. T. Fang, and K. L. Wong, "Broadband lowprofile cylindrical monopole antenna for 1800 MHz operation," Microw. Opt. Technol. Lett., Vol. 41, No. 1, 39-40, 2004.
doi:10.1002/mop.20039 Google Scholar
20. Yang, S. L. S. and K. M. Luk, "Design of a wide-band L-probe patch antenna for pattern reconfiguration or diversity applications," IEEE Trans. Antennas Propag., Vol. 52, No. 4, 433-438, 2006.
doi:10.1109/TAP.2005.863376 Google Scholar
21. Yi, L. P., G. S. Lamba, A. Gupta, and E. K. N. Yung, "A small omnidirectional patch antenna with ultra wide impedance bandwidth," Microwave Conference, 2008, APMC 2008, 1-4, Asia-Pacific, 2008. Google Scholar
22. Wu, W., Y. Yin, Y. Zhao, and S. Zuo, "A miniaturized low-profile antenna for WLAN communications," Microw. Opt. Technol. Lett., Vol. 52, No. 6, 1384-1386, 2010.
doi:10.1002/mop.25203 Google Scholar
23. Li, R. L., B. Pan, T. Wu, and K. Lim, "A broadband printed dipole and a printed array for base station applications," Proc. IEEE Int. Symp. AP-S, 1-4, Jul. 2008. Google Scholar
24. Anguera, J., E. Martnez-Ortigosa, C. Puente, C. Borja, and J. Soler, "Broadband triple-frequency microstrip patch radiator combining a dual-band modified Sierpinski fractal and a monoband antenna," IEEE Trans. Antennas Propag., Vol. 54, No. 11, 3367-3373, 2006.
doi:10.1109/TAP.2006.884209 Google Scholar
25. Tefiku, F. and C. A. Grimes, "Design of broad-band and dual-band antennas comprised of series-fed printed-strip dipole pairs," IEEE Trans. Antennas Propag., Vol. 48, No. 6, 895-900, 2000.
doi:10.1109/8.865221 Google Scholar
26. Li, R. L., T. Wu, B. Pan, K. Lim, J. Laskar, and M. M. Tentzeris, "Equivalentcircuit analysis of a broadband printed dipole with adjusted integrated balun and an array for base station applications," IEEE Trans. Antennas Propag., Vol. 57, No. 7, 2180-2184, 2009.
doi:10.1109/TAP.2009.2021967 Google Scholar
27. Li, R. L., G. Dejean, J. Laskar, and M. M. Tentzeris, "Investigation of circularly polarized loop antennas with a parasitic element for bandwidth enhancement," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 3930-3939, 2005.
doi:10.1109/TAP.2005.859917 Google Scholar
28. Jayasinghe, J. W., J. Anguera, D. N. Uduwawala, and A. Anujar, "A multipurpose genetically engineered microstrip patch antennas: Bandwidth, gain, and polarization," Microw. Opt. Technol. Lett., Vol. 59, No. 4, 941-949, 2017.
doi:10.1002/mop.30439 Google Scholar
29. Lin, S., Y. Tian, J. Lu, D. Wu, J. H. Liu, and H. J. Zhang, "A UWB printed dipole antenna and its radiation characteristic analysis," Progress In Electromagnetics Research C, Vol. 31, 83-96, 2012.
doi:10.2528/PIERC12050501 Google Scholar
30. Khan, S. and K. T. Wong, "Electrically long dipoles in a crossed pair for closed-form estimation of an incident sources polarization," IEEE Trans. Antennas Propag. (Early Access), 1-14, 2019. Google Scholar