Vol. 94
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-07-29
Omnidirectional Wireless Power Transfer System with Multiple Receivers and a Single Wire Wound Spiral Transmitter
By
Progress In Electromagnetics Research C, Vol. 94, 189-202, 2019
Abstract
Last decade has witnessed dramatic advancements in wireless charging distance of magnetic resonant coupling wireless power transfer (MRCWPT) for various portable electronic devices. Driven by the demand of cost-effective and compact system working for multiple receivers, a novel omnidirectional MRCWPT system with a single wire wound spiral transmitter and a single power source is proposed in this work. Besides, an equivalent circuit model is established to derive the power transfer efficiency (PTE) of this novel MRCWPT system. Finite element simulation results have shown that the magnetic field distribution for the proposed model is uniform in all directions. And the PTE of the system depending on the distance between the transmitter and receivers is demonstrated to be independent of the receiving angles. Finally, the theoretical analysis of the simulation results is verified by practical experimental results, which shows that the PTE of the system reaches 60% at the distance of 160 mm and the resonant frequency of 15.5 MHz.
Citation
Haiyue Wang Lianwen Deng Heng Luo Shengxiang Huang Congwei Liao , "Omnidirectional Wireless Power Transfer System with Multiple Receivers and a Single Wire Wound Spiral Transmitter," Progress In Electromagnetics Research C, Vol. 94, 189-202, 2019.
doi:10.2528/PIERC19051801
http://www.jpier.org/PIERC/pier.php?paper=19051801
References

1. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 1, 83-86, Jul. 2007.

2. Basar, M. R., M. Y. Ahmadm, J. Cho, and F. Ibrahim, "Stable and high efficiency wireless power transfer system for robotic capsule using a modified Helmholtz coil," IEEE Trans. Ind. Electron., Vol. 64, No. 2, 1113-1122, Feb. 2017.

3. Yedavalli, P. S., T. Riihonen, X. Wang, and J. M. Rabaey, "Far-field RF wireless power transfer with blind adaptive beam forming for Internet of Things devices," IEEE Access, Vol. 5, 1743-1752, 2017.

4. Zhang, C. and Y. Chen, "Wireless power transfer strategies for cooperative relay system to maximize information throughput," IEEE Access, Vol. 5, 2573-2582, 2017.

5. Li, Y., L. Zhang, T. Zhao, and L. Zou, "The electromagnetic compatibility analysis of experimental apparatus based on wireless power transmission," IEEE Industrial Electronics & Applications, 2334-2338, Jun. 2016.

6. Li, C. J. and H. Ling, "Investigation of wireless power transfer using planarized, capacitor-loaded coupled loops," Progress In Electromagnetics Research, Vol. 148, 223-231, 2014.

7. Fan, Y., L. Li, S. Yu, C. Zhu, and C.-H. Liang, "Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials," Progress In Electromagnetics Research, Vol. 141, 769-784, 2013.

8. El Badawe, M. and O. M. Ramah, "Efficient metasurface rectenna for electromagnetic wireless power transfer and energy harvesting," Progress In Electromagnetics Research, Vol. 161, 35-40, 2018.

9. Robichaud, A., M. Boudreault, and D. Deslandes, "Theoretical analysis of resonant wireless power transmission links composed of electrically small loops," Progress In Electromagnetics Research, Vol. 143, 485-501, 2013.

10. Jang, B.-J., S. Lee, and H. Yoon, "HF-band wireless power transfer system: Concept, issues, and design," Progress In Electromagnetics Research, Vol. 124, 211-231, 2012.

11. Park, S. I., "Ehancement of wireless power transmission into biological tissues using a high surface impedance ground plane," Progress In Electromagnetics Research, Vol. 135, 123-136, 2013.

12. Liu, T., X. Wang, and L. Zheng, "A cooperative SWIPT scheme for wirelessly powered sensor networks," IEEE Trans. Commun., Vol. 65, No. 6, 2740-2752, Jun. 2017.

13. Mai, V. V., W.-Y. Shin, and K. Ishibashi, "Wireless power transfer for distributed estimation in sensor networks," IEEE J. Sel. Topics Signal Process., Vol. 11, No. 3, 549-562, Apr. 2017.

14. Kim, J.-M., M. Han, and H. Sohn, "Magnetic resonance-based wireless power transmission through concrete structures," J. Electromagn. Eng. Sci., Vol. 15, No. 2, 104-110, Apr. 2015.

15. Duong, T. P. and J. W. Lee, "Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 8, 442-444, Aug. 2011.

16. Guan, M., K. Wang, D. Xu, and W.-H. Liao, "Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes," Energy Convers. Manage., Vol. 138, 30-37, Apr. 2017.

17. Caffrey, C. M., T. Sillanpaa, H. Huovila, J. Nikunen, S. Hakulinen, and P. Pursula, "Energy autonomous wireless valve leakage monitoring system with acoustic emission sensor," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 64, No. 11, 2884-2893, Nov. 2017.

18. Ahn, D. and S. Hong, "Effect of coupling between multiple transmitters or multiple receivers on wireless power transfer," IEEE Trans. Ind. Electron., Vol. 60, No. 7, 2602-2613, Jul. 2013.

19. Kim, Y.-J., D. Ha, W. J. Chappell, and P. P. Irazoqui, "Selective wireless power transfer for smart power distribution in a miniature-sized multiple-receiver system," IEEE Trans. Ind. Electron., Vol. 63, No. 3, 1853-1862, Mar. 2016.

20. Zhang, Y., T. Lu, Z. Zhao, F. He, K. Chen, and L. Yuan, "Selective wireless power transfer to multiple loads using receivers of different resonant frequencies," IEEE Trans. Power Electron., Vol. 30, No. 1, 6001-6005, Nov. 2015.

21. Zhang, C., D. Lin, and S. Y. Hui, "Basic control principles of omnidirectional wireless power transfer," IEEE Trans. Power Electron., Vol. 31, No. 7, 5215-5227, Jul. 2016.

22. Lin, D., C. Zhang, and S. Y. R. Hui, "Mathematical analysis of omnidirectional wireless power transfer — Part-I: Two-dimensional systems," IEEE Trans. Power Electron., Vol. 32, No. 1, 625-633, Jan. 2016.

23. Lin, D., C. Zhang, and S. Y. R. Hui, "Mathematical analysis of omnidirectional wireless power transfer — Part-II: Three-dimensional systems," IEEE Trans. Power Electron., Vol. 32, No. 1, 613-624, Jan. 2017.

24. Jonah, O., S. V. Georgakopoulos, and M. M. Tentzeris, "Orientation insensitive power transfer by magnetic resonance for mobile devices," Proc. IEEE Wireless Power Transfer, 5-8, May 2013.

25. Dai, Z., Z. Fang, H. Huang, Y. He, and J. Wang, "Selective omnidirectional magnetic resonant coupling wireless power transfer with multiple-receiver system," IEEE Access, Vol. 6, 19287-19294, Apr. 2018.

26. Ouyang, Z., Z. Zhang, M. A. E. Andersen, and O. C. Thomsen, "Four quadrants integrated transformers for dual-input isolated DC-DC converters," IEEE Trans. Power Electron., Vol. 27, No. 6, 2697-2702, Jun. 2012.

27. Sample, A. P., D. A. Meyer, and J. R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Trans. Ind. Electron., Vol. 58, No. 2, 544-554, Feb. 2011.

28. Liu, X. and G. Wang, "A novel wireless power transfer system with double intermediate resonant coils," IEEE Trans. Ind. Electron., Vol. 63, No. 4, 2174-2180, Apr. 2016.

29. Ha-Van, N. and C. Seo, "Analytical and experimental investigations of omnidirectional wireless power transfer using a cubic transmitter," IEEE Trans. Ind. Electron., Vol. 65, No. 2, 1358-1366, Feb. 2018.