Vol. 95
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-09-19
Motion Compensation Algorithm for Single Track FMCW CSAR by Parametric Sparse Representation
By
Progress In Electromagnetics Research C, Vol. 95, 265-279, 2019
Abstract
In recent years, FMCW CSAR (frequency modulation continue wave circular synthetic aperture radar) is more and more widely used in military reconnaissance and sea surface target recognition. However, due to the influence of external factors, it cannot move in an ideal uniform circular trajectory, resulting in low imaging resolution. In this paper, the problem of motion errors caused by nonuniform circular motion is analyzed, and the phenomenon of range unit broadening and sidelobe increase caused by nonuniform circular motion errors is simulated. The echo model is characterized by error parameters. Based on the compressed sensing imaging algorithm, motion error parameters are estimated by parametric sparse representation. The least squares method and gradient descent method are applied to estimate motion error parameters. Simulations are conducted to show that both of the methods can reach the goal that the motion compensation is realized. The result of simulations and measurement data demonstrate that the algorithm can correct nonuniform circular motion errors better and further improve the imaging resolution.
Citation
Depeng Song, Binbing Li, Yi Qu, and Yijun Chen, "Motion Compensation Algorithm for Single Track FMCW CSAR by Parametric Sparse Representation," Progress In Electromagnetics Research C, Vol. 95, 265-279, 2019.
doi:10.2528/PIERC19061002
References

1. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, 2005.

2. Tang, S., et al., "Processing of monostatic SAR data with general configurations," IEEE Trans. Geosci. Remote Sens., Vol. 12, No. 53, 6529-6546, 2015.
doi:10.1109/TGRS.2015.2443835

3. Prats-Iraola, P., et al., "On the processing of very high resolution spaceborne SAR data," Trans. Geosci. Remote Sens., Vol. 10, No. 52, 6003-6016, 2014.
doi:10.1109/TGRS.2013.2294353

4. Lopez-Dekker, P., M. Rodriguez-Cassola, F. De Zan, G. Krieger, and A. Moreira, "Correlating synthetic aperture radar (CoSAR)," IEEE Trans. Geosci. Remote Sens., Vol. 4, No. 54, 2268-2284, 2016.
doi:10.1109/TGRS.2015.2498707

5. Moreira, A., P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, "A tutorial on synthetic aperture radar," IEEE Geosci. Remote Sens., Vol. 3, No. 1, 6-43, 2013.
doi:10.1109/MGRS.2013.2248301

6. Ciuonzo, D., G. Romano, and R. Solimene, "Performance analysis of time-reversal MUSIC," IEEE Transactions on Signal Processing, Vol. 63, No. 10, 2650-2662, 2015.
doi:10.1109/TSP.2015.2417507

7. Ciuonzo, D., "On time-reversal imaging by statistical testing," IEEE Transactions on Signal Processing Letters, Vol. 24, No. 4, 1024-1028, 2017.
doi:10.1109/LSP.2017.2704612

8. Ciuonzo, D., V. Carotenuto, and A. De Maio, "On multiple covariance equality testing with application to SAR change detection," IEEE Transactions on Signal Processing, Vol. 65, No. 19, 5078-5091, 2017.
doi:10.1109/TSP.2017.2712124

9. Soumekh, M., "Reconnaissance with slant plane circular SAR imaging," IEEE Transactions on Image Processing, Vol. 5, No. 8, 1252-1265, 1996.
doi:10.1109/83.506760

10. Soumekh, M., Synthetic Aperture Radar Signal Processing with MATLAB Algorithms, Wiley, 1999.

11. Ao, D., R. Wang, C. Hu, and Y. Li, "A sparse SAR imaging method based on multiple measurement vectors model," Remote Sens., Vol. 9, No. 297, 1-22, 2017.

12. Jia, G., W. Chang, Q. Zhang, and X. Luan, "The analysis and realization of motion compensation for circular synthetic aperture radar data," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 4, 3060-3071, 2016.
doi:10.1109/JSTARS.2016.2553051

13. Guo, Z. Y., Y. Lin, W. X. Tan, Y. P. Wang, and W. Hong, "Circular SAR motion compensation using trilateration and phase correction," IET International Radar Conference, 1-6, 2013.

14. Xie, H., S. Shi, D. An, et al. "Fast factorized backprojection algorithm for one-stationary bistatic spotlight circular SAR image formation," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 10, No. 4, 1494-1510, 2017.
doi:10.1109/JSTARS.2016.2639580

15. Zhang, B., X. Zhang, and S. Wei, "A circular SAR image autofocus algorithm based on minimum entropy," 2015 IEEE 5th Asia-Paci¯c Conference on Synthetic Aperture Radar (APSAR), 152-155, 2015.
doi:10.1109/APSAR.2015.7306177

16. Lin, Y., W. Hong, and W. Tan, "Compressed sensing technique for circular SAR imaging," 2009 IET International Radar Conference, 1-4, 2009.

17. Wang, X., B. Deng, H. Wang, and Y. Qi, "Ground moving target imaging based on motion compensation for circular SAR," 2017 9th International Conference on Advanced Infocomm Technology, 372-377, 2017.
doi:10.1109/ICAIT.2017.8388948

18. Chen, Y.-C., G. Li, Q. Zhang, Q.-J. Zhang, and X.-G. Xia, "Motion compensation for airborne SAR via parametric sparse representation," IEEE Trans. Geosci. Remote Sens., Vol. 55, No. 1, 551-561, 2017.
doi:10.1109/TGRS.2016.2611522

19. Rao, W., G. Li, X. Wang, and X.-G. Xia, "Parametric sparse representation method for ISAR imaging of rotating targets," IEEE Trans. Aerosp. Electron. Syst., Vol. 2, No. 50, 910-919, 2014.
doi:10.1109/TAES.2014.120535

20. Li, X., S. Liu, and W. Xie, "A novel conjugate gradient method for sensing matrix optimization for compressed sensing systems," Journal of Zhejiang University (Science Edition), Vol. 46, No. 1, 15-21, 2019.