1. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, 2005.
2. Tang, S., et al., "Processing of monostatic SAR data with general configurations," IEEE Trans. Geosci. Remote Sens., Vol. 12, No. 53, 6529-6546, 2015.
doi:10.1109/TGRS.2015.2443835 Google Scholar
3. Prats-Iraola, P., et al., "On the processing of very high resolution spaceborne SAR data," Trans. Geosci. Remote Sens., Vol. 10, No. 52, 6003-6016, 2014.
doi:10.1109/TGRS.2013.2294353 Google Scholar
4. Lopez-Dekker, P., M. Rodriguez-Cassola, F. De Zan, G. Krieger, and A. Moreira, "Correlating synthetic aperture radar (CoSAR)," IEEE Trans. Geosci. Remote Sens., Vol. 4, No. 54, 2268-2284, 2016.
doi:10.1109/TGRS.2015.2498707 Google Scholar
5. Moreira, A., P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, "A tutorial on synthetic aperture radar," IEEE Geosci. Remote Sens., Vol. 3, No. 1, 6-43, 2013.
doi:10.1109/MGRS.2013.2248301 Google Scholar
6. Ciuonzo, D., G. Romano, and R. Solimene, "Performance analysis of time-reversal MUSIC," IEEE Transactions on Signal Processing, Vol. 63, No. 10, 2650-2662, 2015.
doi:10.1109/TSP.2015.2417507 Google Scholar
7. Ciuonzo, D., "On time-reversal imaging by statistical testing," IEEE Transactions on Signal Processing Letters, Vol. 24, No. 4, 1024-1028, 2017.
doi:10.1109/LSP.2017.2704612 Google Scholar
8. Ciuonzo, D., V. Carotenuto, and A. De Maio, "On multiple covariance equality testing with application to SAR change detection," IEEE Transactions on Signal Processing, Vol. 65, No. 19, 5078-5091, 2017.
doi:10.1109/TSP.2017.2712124 Google Scholar
9. Soumekh, M., "Reconnaissance with slant plane circular SAR imaging," IEEE Transactions on Image Processing, Vol. 5, No. 8, 1252-1265, 1996.
doi:10.1109/83.506760 Google Scholar
10. Soumekh, M., Synthetic Aperture Radar Signal Processing with MATLAB Algorithms, Wiley, 1999.
11. Ao, D., R. Wang, C. Hu, and Y. Li, "A sparse SAR imaging method based on multiple measurement vectors model," Remote Sens., Vol. 9, No. 297, 1-22, 2017. Google Scholar
12. Jia, G., W. Chang, Q. Zhang, and X. Luan, "The analysis and realization of motion compensation for circular synthetic aperture radar data," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 4, 3060-3071, 2016.
doi:10.1109/JSTARS.2016.2553051 Google Scholar
13. Guo, Z. Y., Y. Lin, W. X. Tan, Y. P. Wang, and W. Hong, "Circular SAR motion compensation using trilateration and phase correction," IET International Radar Conference, 1-6, 2013. Google Scholar
14. Xie, H., S. Shi, D. An, et al. "Fast factorized backprojection algorithm for one-stationary bistatic spotlight circular SAR image formation," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 10, No. 4, 1494-1510, 2017.
doi:10.1109/JSTARS.2016.2639580 Google Scholar
15. Zhang, B., X. Zhang, and S. Wei, "A circular SAR image autofocus algorithm based on minimum entropy," 2015 IEEE 5th Asia-Paci¯c Conference on Synthetic Aperture Radar (APSAR), 152-155, 2015.
doi:10.1109/APSAR.2015.7306177 Google Scholar
16. Lin, Y., W. Hong, and W. Tan, "Compressed sensing technique for circular SAR imaging," 2009 IET International Radar Conference, 1-4, 2009. Google Scholar
17. Wang, X., B. Deng, H. Wang, and Y. Qi, "Ground moving target imaging based on motion compensation for circular SAR," 2017 9th International Conference on Advanced Infocomm Technology, 372-377, 2017.
doi:10.1109/ICAIT.2017.8388948 Google Scholar
18. Chen, Y.-C., G. Li, Q. Zhang, Q.-J. Zhang, and X.-G. Xia, "Motion compensation for airborne SAR via parametric sparse representation," IEEE Trans. Geosci. Remote Sens., Vol. 55, No. 1, 551-561, 2017.
doi:10.1109/TGRS.2016.2611522 Google Scholar
19. Rao, W., G. Li, X. Wang, and X.-G. Xia, "Parametric sparse representation method for ISAR imaging of rotating targets," IEEE Trans. Aerosp. Electron. Syst., Vol. 2, No. 50, 910-919, 2014.
doi:10.1109/TAES.2014.120535 Google Scholar
20. Li, X., S. Liu, and W. Xie, "A novel conjugate gradient method for sensing matrix optimization for compressed sensing systems," Journal of Zhejiang University (Science Edition), Vol. 46, No. 1, 15-21, 2019. Google Scholar