1. Ward, K. D., R. J. A. Tough, and S. Watts, "Sea clutter: Scattering, the K distribution and radar performance," Waves in Random and Complex Media, Vol. 17, No. 2, 233-234, 2007.
doi:10.1080/17455030601097927 Google Scholar
2. Luo, G. and M. Zhang, "Investigation on the scattering from one-dimensional nonlinear fractal sea surface by second-order small-slope approximation," Progress In Electromagnetics Research, Vol. 133, 425-441, 2013.
doi:10.2528/PIER12082706 Google Scholar
3. Wei, P. B., M. Zhang, D. Nie, and Y. C. Jiao, "Improvement of SSA approach for numerical simulation of sea surface scattering at high microwave bands," Remote Sens., Vol. 10, 1021, 2018.
doi:10.3390/rs10071021 Google Scholar
4. Nie, D., M. Zhang, and N. Li, "Investigation on microwave polarimetric scattering from two-dimensional wind fetch- and water depth-limited nearshore sea surfaces," Progress In Electromagnetics Research, Vol. 145, 251-261, 2014.
doi:10.2528/PIER14022505 Google Scholar
5. Li, X., B. Zhang, A. Mouche, Y. He, and W. Perrie, "Ku-band sea surface radar backscatter at low incidence angles under extreme wind conditions," Remote Sens., Vol. 9, No. 5, 474-488, 2017.
doi:10.3390/rs9050474 Google Scholar
6. Zhang, X. X., Z. S. Wu, and X. Su, "Influence of breaking waves and wake bubbles on surface-ship wake scattering at low grazing angles," Chin. Phys. Lett., Vol. 35, 074101, 2018.
doi:10.1088/0256-307X/35/7/074101 Google Scholar
7. Luo, W., M. Zhang, C. Wang, and H.-C. Yin, "Investigation of low-grazing-angle microwave backscattering from three dimensional breaking sea waves," Progress In Electromagnetics Research, Vol. 119, 279-298, 2011.
doi:10.2528/PIER11062607 Google Scholar
8. Zhang, M., W. Luo, G. Luo, C. Wang, and H.-C. Yin, "Composite scattering of ship on sea surface with breaking waves," Progress In Electromagnetics Research, Vol. 123, 263-277, 2012.
doi:10.2528/PIER11100811 Google Scholar
9. Melville, W. K. and P. Matusov, "Distribution of breaking waves at the ocean surface," Nature, Vol. 417, 58-63, 2002.
doi:10.1038/417058a Google Scholar
10. Churyumov, A. N. and Y. A. Kravtsov, "Microwave backscatter from mesoscale breaking waves on the sea surface," Waves Random Media, Vol. 10, 1-15, 2000.
doi:10.1088/0959-7174/10/1/301 Google Scholar
11. Qi, C., Z. Zhao, W. Yang, Z.-P. Nie, and G. Chen, "Electromagnetic scattering and doppler analysis of three-dimensional breaking wave crests at low-grazing angles," Progress In Electromagnetics Research, Vol. 119, 239-252, 2011.
doi:10.2528/PIER11062401 Google Scholar
12. West, J. C. and Z. Zhao, "Electromagnetic modeling of multipath scattering from breaking water waves with rough faces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 3, 583-592, 2002.
doi:10.1109/TGRS.2002.1000318 Google Scholar
13. Trizna, D. B., "A model for Brewster angle damping and multipath effects on the microwave radar sea echo at low grazing angles," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 5, 1232-1244, 1997.
doi:10.1109/36.628790 Google Scholar
14. Luo, W., M. Zhang, C. Wang, and H.-C. Yin, "Investigation of low-grazing-angle microwave backscattering from three-dimensional breaking sea waves," Progress In Electromagnetics Research, Vol. 119, 279-298, 2011.
doi:10.2528/PIER11062607 Google Scholar
15. Luo, G., M. Zhang, and X.-F. Yuan, "Investigation of EM scattering from electrically large sea surface with breaking wave at low grazing angles," Waves in Random and Complex Media, Vol. 23, No. 3, 226-242, 2013.
doi:10.1080/17455030.2013.804963 Google Scholar
16. Wu, Z. S., J. P. Zhang, L. X. Guo, and P. Zhou, "An improved two-scale model with volume scattering for the dynamic ocean surface," Progress In Electromagnetics Research, Vol. 89, No. 4, 39-56, 2009.
doi:10.2528/PIER08111803 Google Scholar
17. Fois, F., P. Hoogeboom, F. Le Chevalier, and A. Stoffelen, "Future ocean scatterometry: On the use of cross-polar scattering to observe very high winds," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 9, 5009-5020, 2015.
doi:10.1109/TGRS.2015.2416203 Google Scholar
18. Wei, Y., L. Guo, and J. Li, "Numerical simulation and analysis of the spiky sea clutter from the sea surface with breaking waves," IEEE Trans. Antennas Propag., Vol. 63, No. 11, 4983-4994, 2015.
doi:10.1109/TAP.2015.2476375 Google Scholar
19. Li, J., M. Zhang, W. Fan, and D. Nie, "Facet-based investigation on microwave backscattering from sea surface with breaking waves: Sea spikes and SAR imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 4, 2311-2325, 2017. Google Scholar
20. Wang, P., Y. Yao, and M. P. Tulin, "An efficient numerical tank for non-linear water waves, based on the multi-subdomain approach with BEM," Int. J. Numer. Meth. Fl., Vol. 20, No. 12, 1315-1336, 1995.
doi:10.1002/fld.1650201203 Google Scholar
21. Bonmarin, P., "Geometric properties of deep-water breaking waves," J. Fluid Mech., Vol. 209, 405-433, 1989.
doi:10.1017/S0022112089003162 Google Scholar
22. Coatanhay, A. and Y. M. Scolan, "Adaptive multiscale moment method applied to the electromagnetic scattering by coastal breaking sea waves," Math Method Appl. Sci., Vol. 38, No. 10, 2041-2052, 2015.
doi:10.1002/mma.3405 Google Scholar
23. Lyzenga, D. R., A. Maffett, and R. Shuchman, "The contribution of wedge scattering to the radar cross section of the ocean surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 21, No. 4, 502-505, 1983.
doi:10.1109/TGRS.1983.350513 Google Scholar
24. Bondur, V. and E. Sharkov, "Statistical properties of whitecaps on a rough sea," Oceanology, Vol. 22, 274-279, 1982. Google Scholar
25. Monahan, E. C. and D. K. Woolf, "Comments on variations of whitecap coverage with wind stress and water temperature," J. phys. Oceanogr., Vol. 19, 706-709, 1989.
doi:10.1175/1520-0485(1989)019<0706:COOWCW>2.0.CO;2 Google Scholar
26. Reul, N. and B. Chapron, "A model of sea-foam thickness distribution for passive microwave remote sensing applications," J Geophy. Res.: Oceans (1978–2012), Vol. 108, No. C10, 2003. Google Scholar
27. Voronovich, A. and V. Zavorotny, "Theoretical model for scattering of radar signals in Ku-and C-bands from a rough sea surface with breaking waves," Waves Random Media, Vol. 11, No. 3, 247-269, 2001. Google Scholar
28. Anguelova, M. D., "Complex dielectric constant of sea foam at microwave frequencies," J. Geophy. Res: Oceans, Vol. 113, No. C8, 2008. Google Scholar
29. Chen, H., M. Zhang, Y.-W. Zhao, and W. Luo, "An efficient slope-deterministic facet model for SAR imagery simulation of marine scene," IEEE Trans. Antennas Propag., Vol. 58, No. 11, 3751-3756, 2010.
doi:10.1109/TAP.2010.2071349 Google Scholar
30. Zhang, X., Z.-S. Wu, and X. Su, "Electromagnetic scattering from deterministic sea surface with oceanic internal waves via the variable-coefficient gardener model," IEEE J — STARS, Vol. 11, No. 2, 355-366, 2018. Google Scholar
31. Cox, C., "Statistics of the sea surface derived from sun glitter," J. Mar. Res., Vol. 13, 198-227, 1954. Google Scholar
32. Lyalinov, M., A. Serbest, and T. Ikiz, "Perturbation method in the problem of diffraction of an obliquely incident electromagnetic plane wave by an impedance wedge and the diffraction coefficients," International Seminar, Day on Diffraction '2001, Proceedings, 29-31, 180–186, IEEE, Saint Petersburg, Russia, May 2001. Google Scholar
33. Syed, H. H. and J. L. Volakis, "PTD analysis of impedance structures," IEEE Trans. Antennas Propag., Vol. 44, 983-988, 1996.
doi:10.1109/8.504305 Google Scholar
34. Huang, X.-Z. and Y.-Q. Jin, "Scattering and emission from two-scale randomly rough sea surface with foam scatterers," Proc. Inst. Elect. Eng. Microw. Antennas Propag., Vol. 142, 109-114, 1995.
doi:10.1049/ip-map:19951765 Google Scholar
35. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves: Advanced Topics, John Wiley & Sons, 2001.
doi:10.1002/0471224278
36. Alpers, W. and C. Rufenach, "The effect of orbital motions on synthetic aperture radar imagery of ocean waves," IEEE Trans. Antennas Propag., Vol. 27, No. 5, 685-690, 1979.
doi:10.1109/TAP.1979.1142163 Google Scholar
37. Plant, W. J., "Microwave sea return at moderate to high incidence angles," Waves Random and Complex Media, Vol. 13, 339-354, 2003.
doi:10.1088/0959-7174/13/4/009 Google Scholar
38. Schroeder, L., P. Schaffner, J. Mitchell, and W. Jones, "AAFE RADSCAT 13.9-GHz measurements and analysis: Wind-speed signature of the ocean," IEEE J. Oceanic Eng., Vol. 10, 346-357, 1985.
doi:10.1109/JOE.1985.1145123 Google Scholar
39. Schroeder, L., W. Grantham, J. Mitchell, and J. Sweet, "SASS measurements of the Ku band radar signature of the ocean," IEEE J. Oceanic Eng., Vol. 7, 3-14, 1982.
doi:10.1109/JOE.1982.1145504 Google Scholar
40. Goncharenko, Y. V. and G. Farquharson, "In ATI SAR signatures of nearshore ocean breaking waves obtained from field measurements," 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 326-329, IEEE, Melbourne, VIC, Australia, July 21–26, 2013. Google Scholar
41. Perlin, M., W. Choi, and Z. Tian, "Breaking waves in deep and intermediate waters," Annu. Revi. Fluid Mech., Vol. 45, 115-145, 2013.
doi:10.1146/annurev-fluid-011212-140721 Google Scholar