Vol. 96
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-11-02
SOSM Direct Torque and Direct Suspension Force Control for Double Stator Bearingless Switched Reluctance Motor
By
Progress In Electromagnetics Research C, Vol. 96, 179-192, 2019
Abstract
Because of the current commutation and the double salient pole structure of bearingless switched reluctance motors (BSRMs), the torque and suspension force have large ripples when traditional current control methods are used. According to the special structure of the double stator BSRM (DSBSRM), the direct decoupling of torque and suspension force is realized. Therefore, the DSBSRM can be controlled separately as a conventional 12/8 SRM and a four-poles active magnetic bearing. In order to achieve the suppression of the torque ripple and improve the robustness of speed, a direct torque control (DTC) strategy using second order sliding mode (SOSM) speed controller is proposed. In order to achieve the suppression of the suspension force ripple and rotor displacement chattering, a direct suspension force control (DSFC) strategy is proposed as well. Then the SOSM-DT/DSFC model is established by simulink. The results of simulation show that the torque ripple, suspension force ripple and rotor radial displacements of DSBSRM can be reduced respectively. Moreover, the proposed control strategy has better robustness and dynamic performance than traditional control strategy.
Citation
Chu Chen, Huijie Guo, and Ge Zhang, "SOSM Direct Torque and Direct Suspension Force Control for Double Stator Bearingless Switched Reluctance Motor," Progress In Electromagnetics Research C, Vol. 96, 179-192, 2019.
doi:10.2528/PIERC19071201
References

1. Chiba, A., K. Kiyota, N. Hoshi, M. Takemoto, and S. Ogasawara, "Development of a rare-earth-free SR motor with high torque density for hybrid vehicles," IEEE Transactions on Energy Conversion, Vol. 30, No. 1, 175-182, Mar. 2015.
doi:10.1109/TEC.2014.2343962

2. Rahman, K. M., B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, "Advantages of switched reluctance motor applications to EV and HEV: Design and control issues," IEEE Transactions on Industry Applications, Vol. 36, No. 1, 111-121, Jan.–Feb. 2000.
doi:10.1109/28.821805

3. Yang, Z., F. Shang, I. P. Brown, and M. Krishnamurthy, "Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications," IEEE Transactions on Transportation Electrification, Vol. 1, No. 3, 245-254, Oct. 2015.
doi:10.1109/TTE.2015.2470092

4. Chiba, A., et al., "Torque density and efficiency improvements of a switched reluctance motor without rare-earth material for hybrid vehicles," IEEE Transactions on Industry Applications, Vol. 47, No. 3, 1240-1246, May–Jun. 2011.
doi:10.1109/TIA.2011.2125770

5. Krishnamurthy, M., C. S. Edrington, A. Emadi, P. Asadi, M. Ehsani, and B. Fahimi, "Making the case for applications of switched reluctance motor technology in automotive products," IEEE Transactions on Power Electronics, Vol. 21, No. 3, 659-675, May 2006.
doi:10.1109/TPEL.2006.872371

6. Takemoto, M., H. Suzuki, A. Chiba, T. Fukao, and M. A. Rahman, "Improved analysis of a bearingless switched reluctance motor," IEEE Transactions on Industry Applications, Vol. 37, No. 1, 26-34, Jan.–Feb. 2001.
doi:10.1109/28.903123

7. Sun, Y., Y. Yuan, and Y. Huang, "Design and analysis of bearingless flywheel motor specially for flywheel energy storage," Electronics Letters, Vol. 52, No. 1, 66-68, 2016.
doi:10.1049/el.2015.2334

8. Takemoto, M., A. Chiba, H. Akagi, et al. "Radial force and torque of a bearingless switched reluctance motor operating in a region of magnetic saturation," IEEE Transactions on Industry Applications, Vol. 40, No. 1, 103-112, 2004.
doi:10.1109/TIA.2003.821816

9. Chen, L. and W. Hofmann, "Design procedure of bearingless high-speed switched reluctance motors," 2010 International Symposium on Power Electronics Electrical Drives Automation and Motion (SPEEDAM), IEEE, 2010.

10. Wang, et al. "Design of novel bearingless switched reluctance motor," IET Electric Power Applications, Vol. 6, No. 2, 73, 2012.
doi:10.1049/iet-epa.2010.0229

11. Xu, Z., "Design and analysis of a novel 12/14 hybrid pole type bearingless switched reluctance motor," IEEE International Symposium on Industrial Electronics, IEEE, 2012.

12. Yang, Y., F. Liu, and C. Liu, "A new bearingless switched reluctance motor with wide rotor pole arc," Industrial Electronics & Applications, 2014.

13. Wei, P., et al., "Design and characteristic analysis of a novel bearingless SRM with double stator," IEEE International Symposium on Industrial Electronics, 2012.

14. Reddy, P. K., D. Ronanki, and P. Parthiban, "Direct torque and flux control of switched reluctance motor with enhanced torque per ampere ratio and torque ripple reduction," Electronics Letters, Vol. 55, No. 8, 477-478, Apr. 18, 2019.
doi:10.1049/el.2018.8241

15. Cao, X., J. Zhou, C. Liu, and Z. Deng, "Advanced control method for a single-winding bearinglessswitched reluctance motor to reduce torque ripple and radial displacement," IEEE Transactions on Energy Conversion, Vol. 32, No. 4, 1533-1543, Dec. 2017.
doi:10.1109/TEC.2017.2719160

16. Takahashi, I. and Y. Ohmori, "High-performance direct torque control of an induction motor," IEEE Transactions on Industry Applications, Vol. 25, No. 2, 257-264, Mar.–Apr. 1989.
doi:10.1109/28.25540

17. Cheok, A. D., "A new torque and flux control method for switched reluctance motor drives," IEEE Trans. Power Electronics, Vol. 17, No. 4, 543-557, 2002.
doi:10.1109/TPEL.2002.800968

18. Takemoto, M., A. Chiba, and T. Fukao, "A method of determining the advanced angle of square-wave currents in a bearingless switched reluctance motor," IEEE Transactions on Industry Applications, Vol. 37, No. 6, 1702-1709, Nov.–Dec. 2001.
doi:10.1109/28.968181

19. Xu, Z., D. Lee, and J. Ahn, "Comparative analysis of bearinglessswitched reluctance motors with decoupled suspending force control," IEEE Transactions on Industry Applications, Vol. 51, No. 1, 733-743, Jan.–Feb. 2015.
doi:10.1109/TIA.2014.2331422

20. Cao, X., Z. Deng, G. Yang, and X. Wang, "Independent control of average torque and radial force in bearinglesss witched-reluctance motors with hybrid excitations," IEEE Transactions on Power Electronics, Vol. 24, No. 5, 1376-1385, May 2009.
doi:10.1109/TPEL.2009.2016568

21. Wu, X., Y. Yang, and Z. Liu, "Analysis and control of a novel bearingless switched reluctance motor with wider rotor teeth," IECON 2017 — 43rd Annual Conference of the IEEE Industrial Electronics Society, 1796-1801, Beijing, 2017.
doi:10.1109/IECON.2017.8216304

22. Ammar, A., A. Bourek, and A. Benakcha, "Nonlinear SVM-DTC for induction motor drive using input-output feedback linearization and high order sliding mode control," ISA Transactions, Vol. 67, 428-442, 2017.
doi:10.1016/j.isatra.2017.01.010

23. Huangfu, Y.-G., et al., "Chattering avoidance high order sliding mode control for permanent magnet synchronous motor," Electric Machines and Control, 2012.

24. Rafiq, M., et al., "A second order sliding mode control design of a switched reluctance motor using super twisting algorithm," Simulation Modelling Practice and Theory, Vol. 25, 106-117, 2012.
doi:10.1016/j.simpat.2012.03.001

25. Ro, H., H. Jeong, and K. Lee, "Torque ripple minimization of switched reluctance motor using direct torque control based on sliding mode control," 2013 IEEE International Symposium on Industrial Electronics, 1-6, Taipei, 2013.