Vol. 87
Latest Volume
All Volumes
PIERL 123 [2024] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-09-16
Design of Compact Vertically Stacked SIW End-Fire Filtering Antennas with Transmission Zeros
By
Progress In Electromagnetics Research Letters, Vol. 87, 67-73, 2019
Abstract
This paper presents a new type of vertically stacked substrate integrated waveguide (SIW) filtering antenna. It is composed of an SIW bandpass filtering circuit and an antipodal linearly tapered slot antenna (ALTSA). The filtering circuit consists of two vertically stacked SIW cavity resonators which are coupled with each other by etching slot on the common metal layer. By introducing electric and magnetic mixed coupling structures, close-to-passband transmission zeros can be realized and flexibly adjustable. Due to the partially vertically stacked structure, the proposed filtering antenna also shows a compact physical size. For validation, two vertically stacked SIW filtering antennas operating at 30 GHz with transmission zero at the upper or lower side of the passband are designed, fabricated, and measured. Good agreement is observed between the measured and simulated results.
Citation
Changzhou Hua, Xiangyu Jin, and Meng Liu, "Design of Compact Vertically Stacked SIW End-Fire Filtering Antennas with Transmission Zeros," Progress In Electromagnetics Research Letters, Vol. 87, 67-73, 2019.
doi:10.2528/PIERL19072205
References

1. Chuang, C.-T. and S.-J. Chung, "Synthesis and design of a new printed filtering antenna," IEEE Trans. Antennas Propag., Vol. 59, No. 3, 1036-1042, 2011.
doi:10.1109/TAP.2010.2103001

2. Lin, C.-K. and S.-J. Chung, "A compact filtering microstrip antenna with quasi-elliptic broadside antenna gain response," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 381-384, 2011.

3. Dhwaj, K., J. M. Kovitz, H. Tian, L. J. Jiang, and T. Itoh, "Half-mode cavity based planar filtering antenna with controllable transmission zeros," IEEE Antennas Wirel. Propag. Lett., Vol. 17, 833-836, 2018.
doi:10.1109/LAWP.2018.2818058

4. Hua, C., R. Li, Y. Wang, and Y. Lu, "Dual-polarized filtering antenna with printed jerusalem-cross radiator," IEEE Access, Vol. 6, 9000-9005, 2018.
doi:10.1109/ACCESS.2018.2803790

5. Lu, Y.-L., Y. Wang, S. Gao, C. Hua, and T. Liu, "Circularly polarized integrated filtering antenna with polarisation reconfigurability," IET Antennas Propag., Vol. 11, No. 15, 2247-2252, 2017.
doi:10.1049/iet-map.2017.0283

6. Yusuf, Y., Cheng, H., and X. Gong, "A seamless integration of 3-D vertical filters with highly efficient slot antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 11, 4016-4022, 2011.
doi:10.1109/TAP.2011.2164186

7. Cheng, H., Yusuf, Y., and X. Gong, "Vertically integrated three-pole filter/antennas for array applications," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 278-281, 2011.
doi:10.1109/LAWP.2011.2135833

8. Shi, J., X. Wu, Z. N. Chen, X. Qing, L. Lin, J. Chen, and Z.-H. Bao, "A compact differential filtering quasi-Yagi antenna with high frequency selectivity and low cross-polarization levels," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1573-1576, 2015.
doi:10.1109/LAWP.2015.2413054

9. Hua, C., X. Wu, N. Yang, and W. Wu, "Air-filled parallel-plate cylindrical modified Luneberg lens antenna for multiple-beam scanning at millimeter-wave frequencies," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 1, 436-443, 2013.
doi:10.1109/TMTT.2012.2227780

10. Chu, Q.-X. and H. Wang, "A compact open-loop filter with mixed electric and magnetic coupling," IEEE Trans. Microw. Theory Techn., Vol. 56, No. 2, 431-439, 2008.
doi:10.1109/TMTT.2007.914642

11. Yusuf, Y. and X. Gong, "Co-designed substrate-integrated waveguide filters with patch antennas," IET Antennas Propag.,, Vol. 7, No. 7, 493-501, 2013.
doi:10.1049/iet-map.2012.0431